Skip to main content

Probabilistic Topic Modeling, Reinforcement Learning, and Crowdsourcing for Personalized Recommendations

  • Conference paper
  • First Online:
Multi-Agent Systems and Agreement Technologies (EUMAS 2016, AT 2016)

Abstract

We put forward an innovative use of probabilistic topic modeling (PTM) intertwined with reinforcement learning (RL), to provide personalized recommendations. Specifically, we model items under recommendation as mixtures of latent topics following a distribution with Dirichlet priors; this can be achieved via the exploitation of crowdsourced information for each item. Similarly, we model the user herself as an “evolving” document represented by its respective mixture of latent topics. The user’s topic distribution is appropriately updated each time she consumes an item. Recommendations are subsequently based on the divergence between the topic distributions of the user and available items. However, to tackle the exploration versus exploitation dilemma, we apply RL to vary the user’s topic distribution update rate. Our method is immune to the notorious “cold start” problem, and it can effectively cope with changing user preferences. Moreover, it is shown to be competitive against state-of-the-art algorithms, outperforming them in terms of sequential performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Datasets: Movielens 1M: 1M ratings, 6,040 users, 3,952 movies. Movielens 10M: 10M ratings, 71,567 users, 10,681 and movies. We found nontrivial data on Wikipedia for 3,137 movies on the 1M dataset and 8,721 movies on the 10M dataset.

  2. 2.

    BYLI had been evaluated on MovieLens 1M only.

References

  1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  2. Wang, C., Blei, D.M.: Collaborative topic modeling for recommending scientific articles. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 448–456. ACM (2011)

    Google Scholar 

  3. Babas, K., Chalkiadakis, G., Tripolitakis, E.: You are what you consume: a Bayesian method for personalized recommendations. In: Proceedings of the 7th ACM Conference on Recommender Systems, pp. 221–228. ACM (2013)

    Google Scholar 

  4. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009). IEEE

    Article  Google Scholar 

  5. Melville, P., Mooney, R.J., Nagarajan, R.: Content-boosted collaborative filtering for improved recommendations. In: AAAI/IAAI, pp. 187–192 (2002)

    Google Scholar 

  6. Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. In: Proceedings of the Fifth ACM Conference on Digital Libraries, pp. 195–204. ACM (2000)

    Google Scholar 

  7. Bowling, M., Veloso, M.: Rational and convergent learning in stochastic games. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence, vol. 2, pp. 1021–1026 (2001)

    Google Scholar 

  8. Bowling, M., Veloso, M.: Multiagent learning using a variable learning rate. Artif. Intell. 136(2), 215–250 (2002). Elsevier

    Article  MathSciNet  MATH  Google Scholar 

  9. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  10. Koren, Y.: The bellkor solution to the netflix grand prize. Netflix Prize Doc. 81, 1–10 (2009)

    Google Scholar 

  11. Piotte, M., Chabbert, M.: The pragmatic theory solution to the netflix grand prize. Netflix Prize Doc. (2009). http://www.netflixprize.com/assets/GrandPrize2009_BPC_PragmaticTheory.pdf

  12. Toscher, A., Jahrer, M., Bell, R.M.: The bigchaos solution to the netflix grand prize. Netflix Prize Doc. (2009). http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf

  13. Langseth, H., Nielsen, T.D.: A latent model for collaborative filtering. Int. J. Approx. Reason. 53(4), 447–466 (2012)

    Article  MathSciNet  Google Scholar 

  14. Bresler, G., Chen, G.H., Shah, D.: A latent source model for online collaborative filtering. In: Advances in Neural Information Processing Systems, pp. 3347–3355 (2014)

    Google Scholar 

  15. Hofmann, T.: Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. (TOIS) 22(1), 89–115 (2004). ACM

    Article  Google Scholar 

  16. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: Eighth IEEE International Conference on Data Mining, ICDM 2008, pp. 263–272. IEEE (2008)

    Google Scholar 

  17. Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012). ACM

    Article  Google Scholar 

  18. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 145–186. Springer, Heidelberg (2011). doi:10.1007/978-0-387-85820-3_5

    Chapter  Google Scholar 

  19. Agarwal, D., Chen, B.-C.: fLDA: matrix factorization through latent dirichlet allocation. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 91–100. ACM (2010)

    Google Scholar 

  20. Ling, G., Lyu, M.R., King, I.: Ratings meet reviews, a combined approach to recommend. In: Proceedings of the 8th ACM Conference on Recommender Systems, pp. 105–112. ACM (2014)

    Google Scholar 

  21. Kurimo, M.: Indexing audio documents by using latent semantic analysis and SOM. Elsevier (1999)

    Google Scholar 

  22. Wallach, H.M., Murray, I., Salakhutdinov, R., Mimno, D.: Evaluation methods for topic models. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1105–1112. ACM (2009)

    Google Scholar 

  23. Hoffman, M., Bach, F.R., Blei, D.M.: Online learning for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, pp. 856–864 (2010)

    Google Scholar 

  24. McCallum, A.K.: MALLET: A Machine Learning for Language Toolkit (2002). http://mallet.cs.umass.edu

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Chalkiadakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tripolitakis, E., Chalkiadakis, G. (2017). Probabilistic Topic Modeling, Reinforcement Learning, and Crowdsourcing for Personalized Recommendations. In: Criado Pacheco, N., Carrascosa, C., Osman, N., Julián Inglada, V. (eds) Multi-Agent Systems and Agreement Technologies. EUMAS AT 2016 2016. Lecture Notes in Computer Science(), vol 10207. Springer, Cham. https://doi.org/10.1007/978-3-319-59294-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59294-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59293-0

  • Online ISBN: 978-3-319-59294-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics