Skip to main content

Current Status of the Taxonomy of Bacteria Able to Establish Nitrogen-Fixing Legume Symbiosis

  • Chapter
  • First Online:
Microbes for Legume Improvement

Abstract

Bacteria forming nitrogen-fixing symbiosis with legumes, classically named rhizobia, currently include more than 100 species distributed in the old genera Allorhizobium, Azorhizobium, Bradyrhizobium, Ensifer (formerly Sinorhizobium), Mesorhizobium and Rhizobium and in the new genera Neorhizobium and Pararhizobium. In addition, several new rhizobia have been described in the twenty-first century belonging, as the classical rhizobia, to the alpha Proteobacteria genera Aminobacter, Devosia, Methylobacterium, Microvirga, Ochrobactrum, Phyllobacterium and Shinella and to the beta Proteobacteria Burkholderia, Paraburkholderia (formerly Burkholderia) and Cupriavidus. These species carry symbiotic genes encoding for nodulation and nitrogen fixation which are located on plasmids or symbiotic islands. These genes determine the host range and confer rhizobia the ability to fix nitrogen in the legume nodules. Depending on the harboured nodulation genes, several symbiovars have recently been described in the classical rhizobia genera. In this chapter, we review the different groups of bacteria able of forming symbiosis with legumes and their classification based on core genes (genera and species) as well as on auxiliary ones (symbiovars).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar OM, Grasso DH, Riccillo PM, López MV, Szafer E (1998) Rapid identification of bean Rhizobium isolates by a nifH gene-pcr assay. Soil Biol Biochem 30:1655–1661

    Article  CAS  Google Scholar 

  • Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D, Carrere S, Cruveiller S, Dossat C, Lajus A, Marchetti M, Poinsot V, Rouy Z, Servin B, Saad M, Schenowitz C, Barbe V, Batut J, Medigue C, Masson-Boivin C (2008) Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res 18:1472–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47:996–1006

    Article  CAS  PubMed  Google Scholar 

  • Ampomah OY, Huss-Danell K (2011) Genetic diversity of root nodule bacteria nodulating Lotus corniculatus and Anthyllis vulneraria in Sweden. Syst Appl Microbiol 34:267–275

    Article  PubMed  Google Scholar 

  • An DS, Im WT, Yang HC, Lee ST (2006) Shinella granuli gen. nov., sp. nov., and proposal of the reclassification of Zoogloea ramigera ATCC 19623 as Shinella zoogloeoides sp. nov. Int J Syst Evol Microbiol 56:443–448

    Article  CAS  PubMed  Google Scholar 

  • Andam CP, Mondo SJ, Parker MA (2007) Monophyly of nodA and nifH genes across Texan and Costa Rican populations of Cupriavidus nodule symbionts. Appl Environ Microbiol 73:4686–4690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrus AD, Andam C, Parker MA (2012) American origin of Cupriavidus bacteria associated with invasive Mimosa legumes in the Philippines. FEMS Microbiol Ecol 80:747–750

    Article  CAS  PubMed  Google Scholar 

  • Ardley JK, Parker MA, De Meyer SE, Trengove RD, O'Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Willems A, Howieson JG (2012) Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 62:2579–2588

    Article  CAS  PubMed  Google Scholar 

  • Armas-Capote N, Pérez-Yépez J, Martínez-Hidalgo P, Garzón-Machado V, Del Arco-Aguilar M, Velázquez E, León-Barrios M (2014) Core and symbiotic genes reveal nine Mesorhizobium genospecies and three symbiotic lineages among the rhizobia nodulating Cicer canariense in its natural habitat (La Palma, Canary Islands). Syst Appl Microbiol 37:140–148

    Article  CAS  PubMed  Google Scholar 

  • Bakhoum N, Galiana A, Le Roux C, Kane A, Duponnois R, Ndoye F, Fall D, Noba K, Sylla SN, Diouf D (2015) Phylogeny of nodulation genes and symbiotic diversity of Acacia senegal (L.) Willd. and A. seyal (Del.) mesorhizobium strains from different regions of Senegal. Microb Ecol 69:641–651

    Article  PubMed  Google Scholar 

  • Baldwin IL, Fred EB (1929) Nomenclature of the root nodule bacteria of the Leguminosae. J Bacteriol 17:141–150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baraúna AC, Rouws LF, Simoes-Araujo JL, Dos Reis Junior FB, Iannetta PP, Maluk M, Goi SR, Reis VM, James EK, Zilli JE (2016) Rhizobium altiplani sp. nov., isolated from effective nodules on Mimosa pudica growing in untypically alkaline soil in central Brazil. Int J Syst Evol Microbiol 66:4118–4124

    Article  PubMed  Google Scholar 

  • Barrett CF, Parker MA (2005) Prevalence of Burkholderia sp. nodule symbionts on four mimosoid legumes from Barro Colorado Island, Panama. Syst Appl Microbiol 28:57–65

    Article  CAS  PubMed  Google Scholar 

  • Barrett CF, Parker MA (2006) Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica. Appl Environ Microbiol 72:1198–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behrendt U, Kämpfer P, Glaeser SP, Augustin J, Ulrich A (2016) Characterisation of the N2O producing soil bacterium Rhizobium azooxidifex sp. nov. Int J Syst Evol Microbiol. doi:10.1099/ijsem.0.001036

  • Beijerinck MW (1888) Cultur des Bacillus radicicola aus den Knöllchen. Bot Ztg 46:740–750

    Google Scholar 

  • Bejarano A, Ramírez-Bahena MH, Velázquez E, Peix A (2014) Vigna unguiculata is nodulated in Spain by endosymbionts of Genisteae legumes and by a new symbiovar (vignae) of the genus Bradyrhizobium. Syst Appl Microbiol 37:533–540

    Article  PubMed  Google Scholar 

  • Berge O, Lodhi A, Brandelet G, Santaella C, Roncato MA, Christen R, Heulin T, Achouak W (2009) Rhizobium alamii sp. nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. Int J Syst Evol Microbiol 59:367–372

    Article  CAS  PubMed  Google Scholar 

  • van Berkum P, Eardly BD (2002) The aquatic budding bacterium Blastobacter denitrificans is a nitrogen-fixing symbiont of Aeschynomene indica. Appl Environ Microbiol 68:1132–1136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Berkum P, Beyene D, Bao G, Campbell TA, Eardly BD (1998) Rhizobium mongolense sp. nov. is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica [(L.) Ledebour]. Int J Syst Bacteriol 48:13–22

    Article  PubMed  Google Scholar 

  • van Berkum P, Leibold JM, Eardly BD (2006) Proposal for combining Bradyrhizobium spp. (Aeschynomene indica) with Blastobacter denitrificans and to transfer Blastobacter denitrificans (Hirsch and Muller, 1985) to the genus Bradyrhizobium as Bradyrhizobium denitrificans (comb. nov.) Syst Appl Microbiol 29:207–215

    Article  PubMed  CAS  Google Scholar 

  • Bibi F, Chung EJ, Khan A, Jeon CO, Chung YR (2012) Rhizobium halophytocola sp. nov., isolated from the root of a coastal dune plant. Int J Syst Evol Microbiol 62:1997–2003

    Article  CAS  PubMed  Google Scholar 

  • Bontemps C, Rogel MA, Wiechmann A, Mussabekova A, Moody S, Simon MF, Moulin L, Elliott GN, Lacercat-Didier L, Dasilva C, Grether R, Camargo-Ricalde SL, Chen W, Sprent JI, Martínez-Romero E, Young JP, James EK (2016) Endemic Mimosa species from Mexico prefer alphaproteobacterial rhizobial symbionts. New Phytol 209:319–333

    Article  CAS  PubMed  Google Scholar 

  • Boonsnongcheep P, Prathanturarug S, Takahashi Y, Matsumoto A (2015) Rhizobium puerariae sp. nov., an endophytic bacterium from the root nodules of medicinal plant Pueraria candollei var. candollei. Int J Syst Evol Microbiol. doi:10.1099/ijsem.0.000863

  • Bournaud C, Moulin L, Cnockaert M, de Faria SM, Prin Y, Severac D, Vandamme P (2016) Paraburkholderia piptadeniae sp. nov. and Paraburkholderia ribeironis sp. nov., two root-nodulating symbiotic species of Piptadenia gonoacantha in Brazil. Int J Syst Evol Microbiol. doi:10.1099/ijsem.0.001648

  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LM, Yang W, Mayer JE, Roa-Rodríguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633

    Article  CAS  PubMed  Google Scholar 

  • Buchanan RE (1926) What names should be used for the organisms producing nodules on the roots of leguminous plants? Proc Iowa Acad Sci 33:81–90

    Google Scholar 

  • Casida LE (1982) Ensifer adhaerens gen. nov., sp. nov.: a bacterial predator of bacteria in soil. Int J Syst Bacteriol 32:339–345

    Article  Google Scholar 

  • Chahboune R, Carro L, Peix A, Barrijal S, Velázquez E, Bedmar EJ (2011) Bradyrhizobium cytisi sp. nov., isolated from effective nodules of Cytisus villosus. Int J Syst Evol Microbiol 61:2922–2927

    Article  PubMed  Google Scholar 

  • Chahboune R, Carro L, Peix A, Ramírez-Bahena MH, Barrijal S, Velázquez E, Bedmar EJ (2012) Bradyrhizobium rifense sp. nov. isolated from effective nodules of Cytisus villosus grown in the Moroccan Rif. Syst Appl Microbiol 35:302–305

    Article  CAS  PubMed  Google Scholar 

  • Chang YL, Wang JY, Wang ET, Liu HC, Sui XH, Chen WX (2011) Bradyrhizobium lablabi sp. nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea. Int J Syst Evol Microbiol 61:2496–5202

    Article  PubMed  Google Scholar 

  • Chen WX, Yan GH, Li JL (1988) Numerical taxonomy study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38:392–397

    Article  Google Scholar 

  • Chen WX, Li GS, Qi YL, Wang ET, Yuan HL, Li JL (1991) Rhizobium huakuii sp. nov., isolated from the root nodules of Astragalus sinicus. Int J Syst Bacteriol 41:275–280

    Article  Google Scholar 

  • Chen WX, Wang E, Wang S, Li Y, Chen X, Li Y (1995) Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int J Syst Bacteriol 45:153–159

    Article  CAS  PubMed  Google Scholar 

  • Chen WX, Tan ZY, Gao JL, Li Y, Wang ET (1997) Rhizobium hainanense sp. nov., isolated from tropical legumes. Int J Syst Bacteriol 47:870–873

    Article  CAS  PubMed  Google Scholar 

  • Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735

    Article  CAS  PubMed  Google Scholar 

  • Chen WM, James EK, Prescott AR, Kierans M, Sprent JI (2003a) Nodulation of Mimosa spp. by the beta-proteobacterium Ralstonia taiwanensis. Mol Plant Microbe Interact 16:1051–1061

    Article  CAS  PubMed  Google Scholar 

  • Chen WM, Moulin L, Bontemps C, Vandamme P, Béna G, Boivin-Masson C (2003b) Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. J Bacteriol 185:7266–7272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WM, James EK, Chou JH, Sheu SY, Yang SZ, Sprent JI (2005) Beta-rhizobia from Mimosa pigra, a newly discovered invasive plant in Taiwan. New Phytol 168:661–675

    Article  CAS  PubMed  Google Scholar 

  • Chen WM, James EK, Coenye T, Chou JH, Barrios E, de Faria SM, Elliott GN, Sheu SY, Sprent JI, Vandamme P (2006) Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 56:1847–1851

    Article  CAS  PubMed  Google Scholar 

  • Chen WM, de Faria SM, James EK, Elliott GN, Lin KY, Chou JH, Sheu SY, Cnockaert M, Sprent JI, Vandamme P (2007) Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 57:1055–1059

    Article  CAS  PubMed  Google Scholar 

  • Chen WM, de Faria SM, Chou JH, James EK, Elliott GN, Sprent JI, Bontemps C, Young JP, Vandamme P (2008) Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia. Int J Syst Evol Microbiol 58:2174–2179

    Article  CAS  PubMed  Google Scholar 

  • Chen WM, Zhu WF, Bontemps C, Young JP, Wei GH (2010) Mesorhizobium alhagi sp. nov., isolated from wild Alhagi sparsifolia in north-western China. Int J Syst Evol Microbiol 60:958–962

    Article  CAS  PubMed  Google Scholar 

  • Chen WM, Zhu WF, Bontemps C, Young JP, Wei GH (2011) Mesorhizobium camelthorni sp. nov., isolated from Alhagi sparsifolia. Int J Syst Evol Microbiol 61:574–579

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Sheng XF, He LY, Huang Z (2015) Rhizobium yantingense sp. nov., a mineral-weathering bacterium. Int J Syst Evol Microbiol 65:412–417

    Article  CAS  PubMed  Google Scholar 

  • Cobo-Díaz JF, Martínez-Hidalgo P, Fernández-González AJ, Martínez-Molina E, Toro N, Velázquez E, Fernández-López M (2014) The endemic Genista versicolor from Sierra Nevada National Park in Spain is nodulated by putative new Bradyrhizobium species and a novel symbiovar (sierranevadense). Syst Appl Microbiol 37:177–185

    Article  PubMed  CAS  Google Scholar 

  • Conn HJ (1938) Taxonomic relationships of certain non-sporeforming rods in soil. J Bacteriol 36:320–321

    Google Scholar 

  • Conn HJ (1942) Validity of the genus Alcaligenes. J Bacteriol 44:353–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dall'Agnol RF, Ribeiro RA, Ormeño-Orrillo E, Rogel MA, Delamuta JR, Andrade DS, Martínez-Romero E, Hungria M (2013) Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. Int J Syst Evol Microbiol 63:4167–4173

    Article  PubMed  Google Scholar 

  • Dall'Agnol RF, Ribeiro RA, Delamuta JR, Ormeño-Orrillo E, Rogel MA, Andrade DS, Martínez-Romero E, Hungria M (2014) Rhizobium paranaense sp. nov., an effective N2-fixing symbiont of common bean (Phaseolus vulgaris L.) with broad geographical distribution in Brazil. Int J Syst Evol Microbiol 64:3222–3229

    Article  PubMed  Google Scholar 

  • Dangeard PA (1926) Recherches sur les tubercules radicaux des Légumineuses. Botaniste (Paris) 16:1–275

    Google Scholar 

  • De Meyer SE, Coorevits A, Willems A (2012) Tardiphaga robiniae gen. nov, sp. nov., a new genus in the family Bradyrhizobiaceae isolated from Robinia pseudoacacia in Flanders (Belgium). Syst Appl Microbiol 35:205–214

    Article  PubMed  Google Scholar 

  • De Meyer SE, Cnockaert M, Ardley JK, Maker G, Yates R, Howieson JG, Vandamme P (2013a) Burkholderia sprentiae sp. nov., isolated from Lebeckia ambigua root nodules. Int J Syst Evol Microbiol 63:3950–3957

    Article  PubMed  CAS  Google Scholar 

  • De Meyer SE, Cnockaert M, Ardley JK, Trengove RD, Garau G, Howieson JG, Vandamme P (2013b) Burkholderia rhynchosiae sp. nov., isolated from Rhynchosia ferulifolia root nodules. Int J Syst Evol Microbiol 63:3944–3949

    Article  PubMed  CAS  Google Scholar 

  • De Meyer SE, Cnockaert M, Ardley JK, Van Wyk BE, Vandamme PA, Howieson JG (2014) Burkholderia dilworthii sp. nov., isolated from Lebeckia ambigua root nodules. Int J Syst Evol Microbiol 64:1090–1095

    Article  PubMed  CAS  Google Scholar 

  • De Meyer SE, Tan HW, Heenan PB, Andrews M, Willems A (2015) Mesorhizobium waimense sp. nov. isolated from Sophora longicarinata root nodules and Mesorhizobium cantuariense sp. nov. isolated from Sophora microphylla root nodules. Int J Syst Evol Microbiol 65:3419–3426

    Article  PubMed  CAS  Google Scholar 

  • De Meyer SE, Tan HW, Andrews M, Heenan PB, Willems A (2016) Mesorhizobium calcicola sp. nov., Mesorhizobium waitakense sp. nov., Mesorhizobium sophorae sp. nov., Mesorhizobium newzealandense sp. nov. and Mesorhizobium kowhaii sp. nov. isolated from Sophora root nodules in New Zealand. Int J Syst Evol Microbiol. doi:10.1099/ijsem.0.000796

  • Debellé F, Sharma SB (1986) Nucleotide sequence of Rhizobium meliloti RCR2011 genes involved in host specificity of nodulation. Nucleic Acids Res 14:7453–7472

    Article  PubMed  PubMed Central  Google Scholar 

  • Degefu T, Wolde-Meskel E, Frostegård Å (2011) Multilocus sequence analyses reveal several unnamed Mesorhizobium genospecies nodulating Acacia species and Sesbania sesban trees in Southern regions of Ethiopia. Syst Appl Microbiol 34:216–226

    Article  CAS  PubMed  Google Scholar 

  • Degefu T, Wolde-Meskel E, Liu B, Cleenwerck I, Willems A, Frostegård Å (2013) Mesorhizobium shonense sp. nov., Mesorhizobium hawassense sp. nov. and Mesorhizobium abyssinicae sp. nov., isolated from root nodules of different agroforestry legume trees. Int J Syst Evol Microbiol 63:1746–1753

    Article  CAS  PubMed  Google Scholar 

  • Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Melo IS, Martínez-Romero E, Hungria M (2013) Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. Int J Syst Evol Microbiol 63:3342–3351

    Google Scholar 

  • Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Parma MM, Melo IS, Martínez-Romero E, Hungria M (2015) Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov., nitrogen-fixing symbionts of tropical forage legumes. Int J Syst Evol Microbiol 65:4424–4433

    Article  CAS  PubMed  Google Scholar 

  • Delamuta JR, Ribeiro RA, Araújo JL, Rouws LF, Zilli JÉ, Parma MM, Melo IS, Hungria M (2016) Bradyrhizobium stylosanthis sp. nov., comprising nitrogen-fixing symbionts isolated from nodules of the tropical forage legume Stylosanthes spp. Int J Syst Evol Microbiol. doi:10.1099/ijsem.0.001148

  • Diange EA, Lee SS (2013) Rhizobium halotolerans sp. nov., isolated from chloroethylenes contaminated soil. Curr Microbiol 66:599–605

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Alcántara CA, Ramírez-Bahena MH, Mulas D, García-Fraile P, Gómez-Moriano A, Peix A, Velázquez E, González-Andrés F (2014) Analysis of rhizobial strains nodulating Phaseolus vulgaris from Hispaniola Island, a geographic bridge between Meso and South America and the first historical link with Europe. Syst Appl Microbiol 37:149–156

    Article  PubMed  Google Scholar 

  • Diouf D, Fall D, Chaintreuil C, Ba AT, Dreyfus B, Neyra M, Ndoye I, Moulin L (2010) Phylogenetic analyses of symbiotic genes and characterization of functional traits of Mesorhizobium spp. strains associated with the promiscuous species Acacia seyal Del. J Appl Microbiol 108:818–830

    Article  CAS  PubMed  Google Scholar 

  • Dobritsa AP, Samadpour M (2016) Transfer of eleven Burkholderia species to the genus Paraburkholderia and proposal of Caballeronia gen. nov., a new genus to accommodate twelve species of Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol. doi:10.1099/ijsem.0.001065

  • Dreyfus B, Garcia JL, Gillis M (1988) Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 38:89–98

    Article  CAS  Google Scholar 

  • Durán D, Rey L, Mayo J, Zúñiga-Dávila D, Imperial J, Ruiz-Argüeso T, Martínez-Romero E, Ormeño-Orrillo E (2014a) Bradyrhizobium paxllaeri sp. nov. and Bradyrhizobium icense sp. nov., nitrogen-fixing rhizobial symbionts of Lima bean (Phaseolus lunatus L.) in Peru. Int J Syst Evol Microbiol 64:2072–2078

    Article  PubMed  Google Scholar 

  • Durán D, Rey L, Navarro A, Busquets A, Imperial J, Ruiz-Argüeso T (2014b) Bradyrhizobium valentinum sp. nov., isolated from effective nodules of Lupinus mariae-josephae, a lupine endemic of basic-lime soils in Eastern Spain. Syst Appl Microbiol 37:336–341

    Article  PubMed  CAS  Google Scholar 

  • Eckhardt MM, Baldwin IR, Fred EB (1931) Studies on the root-nodule bacteria of Lupinus. J Bacteriol 21:273–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott GN, Chen WM, Bontemps C, Chou JH, Young JP, Sprent JI, James EK (2007a) Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Ann Bot 100:1403–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott GN, Chen WM, Chou JH, Wang HC, Sheu SY, Perin L, Reis VM, Moulin L, Simon MF, Bontemps C, Sutherland JM, Bessi R, de Faria SM, Trinick MJ, Prescott AR, Sprent JI, James EK (2007b) Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytol 173:168–180

    Article  CAS  PubMed  Google Scholar 

  • Farrand SK, van Berkum PB, Oger P (2003) Agrobacterium is a definable genus of the family Rhizobiaceae. Int J Syst Evol Microbiol 53:1681–1687

    Article  CAS  PubMed  Google Scholar 

  • Finan TM (2002) Evolving insights: symbiosis islands and horizontal gene transfer. J Bacteriol 184:2855–2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank B (1889) Ueber die Pilzsymbiose der Leguminosen. Bet Dtsch Bot Ges 7:332–346

    Google Scholar 

  • Fuhrmann M, Hennecke H (1984) Rhizobium japonicum nitrogenase Fe protein gene (nifH). J Bacteriol 158:1005–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao JL, Turner SL, Kan FL, Wang ET, Tan ZY, Qiu YH, Gu J, Terefework Z, Young JP, Lindström K, Chen WX (2004) Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. Int J Syst Evol Microbiol 54:2003–20012

    Article  CAS  PubMed  Google Scholar 

  • García-Fraile P, Rivas R, Willems A, Peix A, Martens M, Martínez-Molina E, Mateos PF, Velázquez E (2007) Rhizobium cellulosilyticum sp. nov., isolated from sawdust of Populus alba. Int J Syst Evol Microbiol 57:844–848

    Article  PubMed  CAS  Google Scholar 

  • García-Fraile P, Mulas-García D, Peix A, Rivas R, González-Andrés F, Velázquez E (2010) Phaseolus vulgaris is nodulated in northern Spain by Rhizobium leguminosarum strains harboring two nodC alleles present in American Rhizobium etli strains: biogeographical and evolutionary implications. Can J Microbiol 56:657–666

    Article  PubMed  CAS  Google Scholar 

  • Garrity GM, Bell JA, Lilburn T (2005) Brucellaceae. Bergey’s manual of systematics of archaea and bacteria. John Wiley & Sons, Inc., New York

    Google Scholar 

  • Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JPW (2001) Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048

    Article  CAS  PubMed  Google Scholar 

  • Gehlot HS, Tak N, Kaushik M, Mitra S, Chen WM, Poweleit N, Panwar D, Poonar N, Parihar R, Tak A, Sankhla IS, Ojha A, Rao SR, Simon MF, Reis Junior FB, Perigolo N, Tripathi AK, Sprent JI, Young JP, James EK, Gyaneshwar P (2013) An invasive Mimosa in India does not adopt the symbionts of its native relatives. Ann Bot 112:179–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh W, Roy P (2006) Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant. Int J Syst Evol Microbiol 56:91–97

    Article  CAS  PubMed  Google Scholar 

  • Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Verméglio A, Médigue C, Sadowsky M (2007) Legumes symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312

    Article  PubMed  Google Scholar 

  • Gnat S, Małek W, Oleńska E, Wdowiak-Wróbel S, Kalita M, Łotocka B, Wójcik M (2015) Phylogeny of symbiotic genes and the symbiotic properties of rhizobia specific to Astragalus glycyphyllos L. PLoS One 23:e0141504

    Article  CAS  Google Scholar 

  • Goethals K, Gao M, Tomekpe K, Van Montagu M, Holsters M (1989) Common nodABC genes in Nod locus 1 of Azorhizobium caulinodans: Nucleotide sequence and plant-inducible expression. Mol Gen Genetics 219:289–298

    Article  CAS  Google Scholar 

  • Göttfert M, Röthlisberger S, Kündig C, Beck C, Marty R, Hennecke H (2001) Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J Bacteriol 183:1405–1412

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham PH, Sadowsky MJ, Keyser HH, Barnet YM, Bradley RS, Cooper JE, De Ley J, Jarvis BDW, Roslycky EB, Strijdom BW, Young JPW (1991) Proposed minimal standards for the description of new genera and species of root- and stem-nodulation bacteria. Int J Syst Bacteriol 41:582–587

    Article  Google Scholar 

  • Grison CM, Jackson S, Merlot S, Dobson A, Grison C (2015) Rhizobium metallidurans sp. nov., a symbiotic heavy metal resistant bacterium isolated from the Anthyllis vulneraria Zn-hyperaccumulator. Int J Syst Evol Microbiol 65:1525–1530

    Article  CAS  PubMed  Google Scholar 

  • Grönemeyer JL, Chimwamurombe P, Reinhold-Hurek B (2015a) Bradyrhizobium subterraneum sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of groundnuts. Int J Syst Evol Microbiol 65:3241–3247

    Article  PubMed  CAS  Google Scholar 

  • Grönemeyer JL, Hurek T, Reinhold-Hurek B (2015b) Bradyrhizobium kavangense sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of traditional Namibian pulses. Int J Syst Evol Microbiol 65:4886–4894

    Article  CAS  Google Scholar 

  • Grönemeyer JL, Hurek T, Bünger W, Reinhold-Hurek B (2016) Bradyrhizobium vignae sp. nov., a nitrogen-fixing symbiont isolated from effective nodules of Vigna and Arachis. Int J Syst Evol Microbiol 66:62–69

    Article  PubMed  CAS  Google Scholar 

  • Gu CT, Wang ET, Tian CF, Han TX, Chen WF, Sui XH, Chen WX (2008) Rhizobium miluonense sp. nov., a symbiotic bacterium isolated from Lespedeza root nodules. Int J Syst Evol Microbiol 58:1364–1368

    Article  CAS  PubMed  Google Scholar 

  • Gu T, Sun LN, Zhang J, Sui XH, Li SP (2014) Rhizobium flavum sp. nov., a triazophos-degrading bacterium isolated from soil under the long-term application of triazophos. Int J Syst Evol Microbiol 64:2017–2022

    Article  CAS  PubMed  Google Scholar 

  • Guan SH, Chen WF, Wang ET, Lu YL, Yan XR, Zhang XX, Chen WX (2008) Mesorhizobium caraganae sp. nov., a novel rhizobial species nodulated with Caragana spp. in China. Int J Syst Evol Microbiol 58:2646–2653

    Article  CAS  PubMed  Google Scholar 

  • Gubry-Rangin C, Béna G, Cleyet-Marel JC, Brunel B (2013) Definition and evolution of a new symbiovar, sv. rigiduloides, among Ensifer meliloti efficiently nodulating Medicago species. Syst Appl Microbiol 36:490–496

    Article  PubMed  Google Scholar 

  • Guerrouj K, Ruíz-Díez B, Chahboune R, Ramírez-Bahena MH, Abdelmoumen H, Quiñones MA, El Idrissi MM, Velázquez E, Fernández-Pascual M, Bedmar EJ, Peix A (2013) Definition of a novel symbiovar (sv. retamae) within Bradyrhizobium retamae sp. nov., nodulating Retama sphaerocarpa and Retama monosperma. Syst Appl Microbiol 36:218–223

    Article  CAS  PubMed  Google Scholar 

  • Han TX, Han LL, Wu LJ, Chen WF, Sui XH, Gu JG, Wang ET, Chen WX (2008a) Mesorhizobium gobiense sp. nov. and Mesorhizobium tarimense sp. nov., isolated from wild legumes growing in desert soils of Xinjiang, China. Int J Syst Evol Microbiol 58:2610–2618

    Article  CAS  PubMed  Google Scholar 

  • Han TX, Wang ET, Wu LJ, Chen WF, Gu JG, Gu CT, Tian CF, Chen WX (2008b) Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. Int J Syst Evol Microbiol 58:1693–1699

    Article  CAS  PubMed  Google Scholar 

  • Helene LC, Marçon Delamuta JR, Augusto Ribeiro R, Ormeño-Orrillo E, Antonio Rogel M, Martínez-Romero E, Hungria M (2015) Bradyrhizobium viridifuturi sp. nov., encompassing nitrogen-fixing symbionts of legumes used for green manure and environmental services. Int J Syst Evol Microbiol 65:4441–4448

    Article  CAS  PubMed  Google Scholar 

  • Hirsch P, Müller M (1985) Blastobacter aggregatus sp. nov., Blastobacter capsulatus sp. nov., and Blastobacter denitrificans sp. nov., new budding bacteria from freshwater habitats. Syst Appl Microbiol 6:281–286

    Article  Google Scholar 

  • Horn K, Parker IM, Malek W, Rodríguez-Echeverría S, Parker MA (2014) Disparate origins of Bradyrhizobium symbionts for invasive populations of Cytisus scoparius (Leguminosae) in North America. FEMS Microbiol Ecol 89:89–98

    Article  CAS  PubMed  Google Scholar 

  • Hou BC, Wang ET, Li Y, Jia RZ, Chen WF, Gao Y, Dong R, Chen WX (2009) Rhizobium tibeticum sp. nov., a symbiotic bacterium isolated from Medicago archiducis-nicolai Vassilcz. Int J Syst Evol Microbiol 59:3051–3057

    Article  CAS  PubMed  Google Scholar 

  • Hunter WJ, Kuykendall LD, Manter DK (2007) Rhizobium selenireducens sp. nov.: a selenite-reducing alpha-Proteobacteria isolated from a bioreactor. Curr Microbiol 55:455–460

    Article  CAS  PubMed  Google Scholar 

  • Iglesias O, Rivas R, García-Fraile P, Abril A, Mateos PF, Martinez-Molina E, Velázquez E (2007) Genetic characterization of fast-growing rhizobia able to nodulate Prosopis alba in North Spain. FEMS Microbiol Lett 277:210–216

    Article  CAS  PubMed  Google Scholar 

  • Islam MS, Kawasaki H, Muramatsu Y, Nakagawa Y, Seki T (2008) Bradyrhizobium iriomotense sp. nov., isolated from a tumor-like root of the legume Entada koshunensis from Iriomote Island in Japan. Biosci Biotechnol Biochem 72:1416–1429

    Article  CAS  PubMed  Google Scholar 

  • Jarvis BDW, Pankhurst CE, Patel JJ (1982) Rhizobium loti, a new species of legume root nodule bacteria. Int J Syst Bacteriol 32:378–380

    Article  Google Scholar 

  • Jarvis BDW, Downer HL, Young JPW (1992) Phylogeny of fast-growing soybean-nodulating rhizobia supports synonymy of Sinorhizobium and Rhizobium and assignment to Rhizobium fredii. Int J Syst Bacteriol 42:93–96

    Article  CAS  PubMed  Google Scholar 

  • Jarvis BDW, van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC, Gillis M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898

    Article  Google Scholar 

  • Ji Z, Yan H, Cui Q, Wang E, Chen W, Chen W (2015) Genetic divergence and gene flow among Mesorhizobium strains nodulating the shrub legume Caragana. Syst Appl Microbiol 38:176–183

    Article  CAS  PubMed  Google Scholar 

  • Jiao YS, Liu YH, Yan H, Wang ET, Tian CF, Chen WX, Guo BL, Chen WF (2015a) Rhizobial diversity and nodulation characteristics of the extremely promiscuous legume Sophora flavescens. Mol Plant Microbe Interact 28:1338–1352

    Article  CAS  PubMed  Google Scholar 

  • Jiao YS, Yan H, Ji ZJ, Liu YH, Sui XH, Wang ET, Guo BL, Chen WX, Chen WF (2015b) Rhizobium sophorae sp. nov. and Rhizobium sophoriradicis sp. nov., nitrogen-fixing rhizobial symbionts of the medicinal legume Sophora flavescens. Int J Syst Evol Microbiol 65:497–503

    Article  CAS  PubMed  Google Scholar 

  • Jiao YS, Yan H, Ji ZJ, Liu YH, Sui XH, Zhang XX, Wang ET, Chen WX, Chen WF (2015c) Phyllobacterium sophorae sp. nov., a symbiotic bacterium isolated from root nodules of Sophora flavescens. Int J Syst Evol Microbiol 65:399–406

    Article  CAS  PubMed  Google Scholar 

  • Jordan DC (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139

    Article  Google Scholar 

  • Jordan DC (1984) Family III Rhizobiaceae. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol I. Williams and Wilkins Co., Baltimore, pp 234–242

    Google Scholar 

  • Jordan DC, Allen ON (1974) Family 111. Rhizobiaceae Conn, 1938. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. Williams & Wilkins Co., Baltimore, pp 261–264

    Google Scholar 

  • Jourand P, Giraud E, Béna G, Sy A, Willems A, Gillis M, Dreyfus B, de Lajudie P (2004) Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273

    Article  CAS  PubMed  Google Scholar 

  • Judicial Commission of the International Committee on Systematics of Prokaryotes (2008) The genus name Sinorhizobium Chen et al. 1988 is a later synonym of Ensifer Casida 1982 and is not conserved over the latter genus name, and the species name ‘Sinorhizobium adhaerens’ is not validly published. Opinion 84. Int J Syst Evol Microbiol 58:1973

    Article  Google Scholar 

  • Kaiya S, Rubaba O, Yoshida N, Yamada T, Hiraishi A (2012) Characterization of Rhizobium naphthalenivorans sp. nov. with special emphasis on aromatic compound degradation and multilocus sequence analysis of housekeeping genes. J Gen Appl Microbiol 58:211–224

    Article  CAS  PubMed  Google Scholar 

  • Kathiravan R, Jegan S, Ganga V, Prabavathy VR, Tushar L, Sasikala C, Ramana CV (2013) Ciceribacter lividus gen. nov., sp. nov., isolated from rhizosphere soil of chick pea (Cicer arietinum L.) Int J Syst Evol Microbiol 63:4484–4488

    Article  CAS  PubMed  Google Scholar 

  • Kaur J, Verma M, Lal R (2011) Rhizobium rosettiformans sp. nov., isolated from a hexachlorocyclohexane dump site, and reclassification of Blastobacter aggregatus Hirsch and Muller 1986 as Rhizobium aggregatum comb. nov. Int J Syst Evol Microbiol 61:1218–1225

    Article  CAS  PubMed  Google Scholar 

  • Kersters K, de Ley J (1984) Genus III Agrobacterium. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol I. Williams and Wilkins Co., Baltimore, pp 244–254

    Google Scholar 

  • Kesari V, Ramesh AM, Rangan L (2013) Rhizobium pongamiae sp. nov. from root nodules of Pongamia pinnata. Biomed Res Int 2013:165198

    PubMed  PubMed Central  Google Scholar 

  • Khalid R, Zhang YJ, Ali S, Sui XH, Zhang XX, Amara U, Chen WX, Hayat R (2015) Rhizobium pakistanensis sp. nov., isolated from groundnut (Arachis hypogaea) nodules grown in rainfed Pothwar, Pakistan. Antonie van Leeuwenhoek 107:281–290

    Article  CAS  PubMed  Google Scholar 

  • Kimes NE, López-Pérez M, Flores-Félix JD, Ramírez-Bahena MH, Igual JM, Peix A, Rodriguez-Valera F, Velázquez E (2015) Pseudorhizobium pelagicum gen. nov, sp. nov. isolated from a pelagic Mediterranean zone. Syst Appl Microbiol 38:293–299

    Article  PubMed  Google Scholar 

  • Kittiwongwattana C, Thawai C (2013) Rhizobium paknamense sp. nov., isolated from lesser duckweeds (Lemna aequinoctialis). Int J Syst Evol Microbiol 63:3823–3828

    Article  CAS  PubMed  Google Scholar 

  • Kittiwongwattana C, Thawai C (2014) Rhizobium lemnae sp. nov., a bacterial endophyte of Lemna aequinoctialis. Int J Syst Evol Microbiol 64:2455–2460

    Article  CAS  PubMed  Google Scholar 

  • Knösel DH (1984) Genus IV. Phyllobacterium nom. rev. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams & Wilkins Co., Baltimore, pp 254–256

    Google Scholar 

  • Kuykendall LD, Saxena B, Devine TE, Udell SE (1992) Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505

    Article  CAS  Google Scholar 

  • Kuykendall LD, Young JM, Martínez-Romero E, Kerr A, Sawada H (2005) Order Rhizobiales (new) Family Rhizobiaceae Genus Rhizobium. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) The alpha-, beta-, delta- and epsilonproteobacteria, the proteobacteria: Part C. Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, pp 324–340

    Google Scholar 

  • Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993

    Article  CAS  PubMed  Google Scholar 

  • de Lajudie P, Laurent-Fulele E, Willems A, Torck U, Coopman R, Collins MD, Kersters K, Dreyfus B, Gillis M (1992) Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 42:93–96

    Article  Google Scholar 

  • de Lajudie P, Willems A, Pot B, Dewettinck D, Maestrojuan G, Neyra M, Collins MD, Dreyfus B, Kersters K, Gillis M (1994) Polyphasic taxonomy of Rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol 44:715–733

    Article  Google Scholar 

  • de Lajudie P, Willems A, Nick G, Moreira F, Molouba F, Hoste B, Torck U, Neyra M, Collins MD, Lindström K, Dreyfus B, Gillis M (1998) Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48:369–382

    Article  PubMed  Google Scholar 

  • Lang E, Schumann P, Adler S, Spröer C, Sahin N (2013) Azorhizobium oxalatiphilum sp. nov., and emended description of the genus Azorhizobium. Int J Syst Evol Microbiol 63:1505–1511

    Article  CAS  PubMed  Google Scholar 

  • Laranjo M, Alexandre A, Rivas R, Velázquez E, Young JP, Oliveira S (2008) Chickpea rhizobia symbiosis genes are highly conserved across multiple Mesorhizobium species. FEMS Microbiol Ecol 66:391–400

    Article  CAS  PubMed  Google Scholar 

  • Latif S, Khan S, Naveed M, Mustafa G, Bashir T, Mumtaz AS (2013) The diversity of Rhizobia, Sinorhizobia and novel non-rhizobial Paenibacillus nodulating wild herbaceous legumes. Arch Microbiol 195:647–653

    Article  CAS  PubMed  Google Scholar 

  • Lemaire B, Dlodlo O, Chimphango S, Stirton C, Schrire B, Boatwright JS, Honnay O, Smets E, Sprent J, James EK, Muasya AM (2015) Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape subregion (South Africa). FEMS Microbiol Ecol 91:1–17

    Article  PubMed  CAS  Google Scholar 

  • León-Barrios M, Lorite MJ, Donate-Correa J, Sanjuán J (2009) Ensifer meliloti bv. lancerottense establishes nitrogen-fixing symbiosis with Lotus endemic to the Canary Islands and shows distinctive symbiotic genotypes and host range. Syst Appl Microbiol 32:413–420

    Article  PubMed  CAS  Google Scholar 

  • Li QQ, Wang ET, Chang YL, Zhang YZ, Zhang YM, Sui XH, Chen WF, Chen WX (2011) Ensifer sojae sp. nov., isolated from root nodules of Glycine max grown in saline-alkaline soils. Int J Syst Evol Microbiol 61:1981–1988

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Wang R, Zhang XX, Young JP, Wang ET, Sui XH, Chen WX (2015) Bradyrhizobium guangdongense sp. nov. and Bradyrhizobium guangxiense sp. nov., isolated from effective nodules of peanut. Int J Syst Evol Microbiol 65:4655–4661

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li X, Liu Y, Wang ET, Ren C, Liu W, Xu H, Wu H, Jiang N, Li Y, Zhang X, Xie Z (2016a) Genetic diversity and community structure of rhizobia nodulating Sesbania cannabina in saline-alkaline soils. Syst Appl Microbiol 39:195–202

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yan J, Yu B, Wang ET, Li X, Yan H, Liu W, Xie Z (2016b) Ensifer alkalisoli sp. nov., isolated from root nodules of Sesbania cannabina grown in saline-alkaline soils. Int J Syst Evol Microbiol. doi:10.1099/ijsem.0.001510

  • Li Y, Lei X, Xu Y, Zhu H, Xu M, Fu L, Zheng W, Zhang J, Zheng T (2017) Rhizobium albus sp. nov., isolated from lake water in Xiamen, Fujian province of China. Curr Microbiol 74:42–48

    Article  CAS  PubMed  Google Scholar 

  • Lin DX, Wang ET, Tang H, Han TX, He YR, Guan SH, Chen WX (2008) Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 58:1409–1413

    Article  CAS  PubMed  Google Scholar 

  • Lin DX, Chen WF, Wang FQ, Hu D, Wang ET, Sui XH, Chen WX (2009) Rhizobium mesosinicum sp. nov., isolated from root nodules of three different legumes. Int J Syst Evol Microbiol 59:1919–1923

    Article  PubMed  Google Scholar 

  • Lin SY, Hsu YH, Liu YC, Hung MH, Hameed A, Lai WA, Yen WS, Young CC (2014) Rhizobium straminoryzae sp. nov., isolated from the surface of rice straw. Int J Syst Evol Microbiol 64:2962–2968

    Article  CAS  PubMed  Google Scholar 

  • Lin SY, Hung MH, Hameed A, Liu YC, Hsu YH, Wen CZ, Arun AB, Busse HJ, Glaeser SP, Kämpfer P, Young CC (2015) Rhizobium capsici sp. nov., isolated from root tumor of a green bell pepper (Capsicum annuum var. grossum) plant. Antonie van Leeuwenhoek 107:773–784

    Article  CAS  PubMed  Google Scholar 

  • Lindström K (1989) Rhizobium galegae, a new species of legume root nodule bacteria. Int J Syst Bacteriol 39:365–367

    Article  Google Scholar 

  • Liu XY, Wu W, Wang ET, Zhang B, Macdermott J, Chen WX (2011) Phylogenetic relationships and diversity of β-rhizobia associated with Mimosa species grown in Sishuangbanna, China. Int J Syst Evol Microbiol 61:334–342

    Article  CAS  PubMed  Google Scholar 

  • Liu TY, Li Y Jr, Liu XX, Sui XH, Zhang XX, Wang ET, Chen WX, Chen WF, Puławska J (2012a) Rhizobium cauense sp. nov., isolated from root nodules of the herbaceous legume Kummerowia stipulacea grown in campus lawn soil. Syst Appl Microbiol 35:415–420

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wei S, Wang F, James EK, Guo X, Zagar C, Xia LG, Dong X, Wang YP (2012b) Burkholderia and Cupriavidus spp. are the preferred symbionts of Mimosa spp. in southern China. FEMS Microbiol Ecol 80:417–426

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang RP, Ren C, Lai QL, Zeng RY (2015) Rhizobium marinum sp. nov., a malachite-green-tolerant bacterium isolated from seawater. Int J Syst Evol Microbiol 65:4449–4454

    Article  CAS  PubMed  Google Scholar 

  • Lloret L, Ormeño-Orrillo E, Rincón R, Martínez-Romero J, Rogel-Hernández MA, Martínez-Romero E (2007) Ensifer mexicanus sp. nov. a new species nodulating Acacia angustissima (Mill.) Kuntze in Mexico. Syst Appl Microbiol 30:280–290

    Article  CAS  PubMed  Google Scholar 

  • López-López A, Rogel MA, Ormeño-Orrillo E, Martínez-Romero J, Martínez-Romero E (2010) Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst Appl Microbiol 33:322–327

    Article  PubMed  Google Scholar 

  • López-López A, Rogel-Hernández MA, Barois I, Ortiz Ceballos AI, Martínez J, Ormeño-Orrillo E, Martínez-Romero E (2012) Rhizobium grahamii sp. nov., from nodules of Dalea leporina, Leucaena leucocephala and Clitoria ternatea, and Rhizobium mesoamericanum sp. nov., from nodules of Phaseolus vulgaris, siratro, cowpea and Mimosa pudica. Int J Syst Evol Microbiol 62:2264–2271

    Article  PubMed  CAS  Google Scholar 

  • Lorite MJ, Videira e Castro I, Muñoz S, Sanjuán J (2012) Phylogenetic relationship of Lotus uliginosus symbionts with bradyrhizobia nodulating genistoid legumes. FEMS Microbiol Ecol 79:454–464

    Article  CAS  PubMed  Google Scholar 

  • Lorite MJ, Flores-Félix JD, Peix Á, Sanjuán J, Velázquez E (2016) Mesorhizobium olivaresii sp. nov. isolated from Lotus corniculatus nodules. Syst Appl Microbiol 39:557–561

    Article  CAS  PubMed  Google Scholar 

  • Lortet G, Mear N, Lorquin J, Dreyfus B, de Lajudie P, Rosenberg C, Boivin C (1996) Nod factor thin-layer chromatography profiling as a tool to characterize symbiotic specificity of rhizobial strains: application to Sinorhizobium saheli, S. teranga, and Rhizobium sp. strains isolated from Acacia and Sesbania. Mol Plant Microbe Interact 9:736–747

    Article  Google Scholar 

  • Lu YL, Chen WF, Han LL, Wang ET, Chen WX (2009a) Rhizobium alkalisoli sp. nov., isolated from the legume Caragana intermedia growing in saline-alkaline soils. Int J Syst Evol Microbiol 59:3006–3011

    Article  CAS  Google Scholar 

  • Lu YL, Chen WF, Han LL, Wang ET, Zhang XX, Chen WX, Han SZ (2009b) Mesorhizobium shangrilense sp. nov., isolated from root nodules of Caragana spp. Int J Syst Evol Microbiol 59:3012–3018

    Article  CAS  PubMed  Google Scholar 

  • Lu YL, Chen WF, Wang ET, Guan SH, Yan XR, Chen WX (2009c) Genetic diversity and biogeography of rhizobia associated with Caragana species in three ecological regions of China. Syst Appl Microbiol 32:351–361

    Article  CAS  PubMed  Google Scholar 

  • Lu JK, Dou YJ, Zhu YJ, Wang SK, Sui XH, Kang LH (2014) Bradyrhizobium ganzhouense sp. nov., an effective symbiotic bacterium isolated from Acacia melanoxylon R. Br. nodules. Int J Syst Evol Microbiol 64:1900–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marek-Kozaczuk M, Leszcz A, Wielbo J, Wdowiak-Wróbel S, Skorupska A (2013) Rhizobium pisi sv. trifolii K3.22 harboring nod genes of the Rhizobium leguminosarum sv. trifolii cluster. Syst Appl Microbiol 36:252–258

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Aguilar L, Salazar-Salazar C, Méndez RD, Caballero-Mellado J, Hirsch AM, Vásquez-Murrieta MS, Estrada-de los Santos P (2013) Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris. Antonie van Leeuwenhoek 104:1063–1071

    Article  PubMed  Google Scholar 

  • Martínez-Hidalgo P, Flores-Félix JD, Menéndez E, Rivas R, Carro L, Mateos PF, Martínez-Molina E, León-Barrios M, Velázquez E (2015a) Cicer canariense, an endemic legume to the Canary Islands, is nodulated in mainland Spain by fast-growing strains from symbiovar trifolii phylogenetically related to Rhizobium leguminosarum. Syst Appl Microbiol 38:346–350

    Article  PubMed  Google Scholar 

  • Martínez-Hidalgo P, Ramírez-Bahena MH, Flores-Félix JD, Rivas R, Igual JM, Mateos PF, Martínez-Molina E, León-Barrios M, Peix Á, Velázquez E (2015b) Revision of the taxonomic status of type strains of Mesorhizobium loti and reclassification of strain USDA 3471T as the type strain of Mesorhizobium erdmanii sp. nov. and ATCC 33669T as the type strain of Mesorhizobium jarvisii sp. nov. Int J Syst Evol Microbiol 65:1703–1708

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Hidalgo P, Ramírez-Bahena MH, Flores-Félix JD, Igual JM, Sanjuán J, León-Barrios M, Peix A, Velázquez E (2016) Reclassification of strains MAFF 303099T and R7A into the new species Mesorhizobium japonicum sp. nov. Int J Syst Evol Microbiol. doi:10.1099/ijsem.0.001448

  • Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA (1991) Rhizobium tropici: a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426

    Article  PubMed  Google Scholar 

  • Maynaud G, Willems A, Soussou S, Vidal C, Mauré L, Moulin L, Cleyet-Marel JC, Brunel B (2012) Molecular and phenotypic characterization of strains nodulating Anthyllis vulneraria in mine tailings, and proposal of Aminobacter anthyllidis sp. nov., the first definition of Aminobacter as legume-nodulating bacteria. Syst Appl Microbiol 35:65–72

    Article  CAS  PubMed  Google Scholar 

  • Merabet C, Martens M, Mahdhi M, Zakhia F, Sy A, Le Roux C, Domergue O, Coopman R, Bekki A, Mars M, Willems A, de Lajudie P (2010) Multilocus sequence analysis of root nodule isolates from Lotus arabicus (Senegal), Lotus creticus, Argyrolobium uniflorum and Medicago sativa (Tunisia) and description of Ensifer numidicus sp. nov. and Ensifer garamanticus sp. nov. Int J Syst Evol Microbiol 60:664–674

    Article  CAS  PubMed  Google Scholar 

  • Mergaert J, Swings J (2005) Genus I. Phyllobacterium (ex Knösel 1962) Knösel 1984, 356VP (Effective publication: Knösel 1984, 254). In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology: Part C, vol 2, 2nd edn. Springer, New York, pp 394–396

    Chapter  Google Scholar 

  • Mierzwa B, Łotocka B, Wdowiak-Wróbel S, Kalita M, Gnat S, Małek W (2010) Insight into the evolutionary history of symbiotic genes of Robinia pseudoacacia rhizobia deriving from Poland and Japan. Arch Microbiol 192:341–350

    Article  CAS  PubMed  Google Scholar 

  • Mnasri B, Mrabet M, Laguerre G, Aouani ME, Mhamdi R (2007) Salt-tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N2-fixation with Phaseolus vulgaris constitute a novel biovar (bv. mediterranense) of Sinorhizobium meliloti. Arch Microbiol 187:79–85

    Article  CAS  PubMed  Google Scholar 

  • Mnasri B, Saïdi S, Chihaoui SA, Mhamdi R (2012) Sinorhizobium americanum symbiovar mediterranense is a predominant symbiont that nodulates and fixes nitrogen with common bean (Phaseolus vulgaris L.) in a Northern Tunisian field. Syst Appl Microbiol 35:263–269

    Article  CAS  PubMed  Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411:948–950. Erratum in: Nature 412:926

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C, Vial L, Paulin L, de Lajudie P, Lindström K (2014) Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 37:208–215

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K (2015) Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 38:84–90

    Article  PubMed  Google Scholar 

  • Mousavi SA, Li L, Wei G, Räsänen L, Lindström K (2016) Evolution and taxonomy of native mesorhizobia nodulating medicinal Glycyrrhiza species in China. Syst Appl Microbiol. doi:10.1016/j.syapm.2016.03.009

  • Nakatsukasa H, Uchiumi T, Kucho K, Suzuki A, Higashi S, Abe M (2008) Transposon mediation allows a symbiotic plasmid of Rhizobium leguminosarum bv. trifolii to become a symbiosis island in Agrobacterium and Rhizobium. J Gen Appl Microbiol 54:107–118

    Article  CAS  PubMed  Google Scholar 

  • Nandasena KG, O'Hara GW, Tiwari RP, Willlems A, Howieson JG (2007) Mesorhizobium ciceri biovar biserrulae, a novel biovar nodulating the pasture legume Biserrula pelecinus L. Int J Syst Evol Microbiol 57:1041–1045

    Article  CAS  PubMed  Google Scholar 

  • Nandasena KG, O'Hara GW, Tiwari RP, Willems A, Howieson JG (2009) Mesorhizobium australicum sp. nov. and Mesorhizobium opportunistum sp. nov. isolated from Biserrula pelecinus L. growing in Australia. Int J Syst Evol Microbiol 59:2140–2147

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TM, Pham VH, Kim J (2015) Mesorhizobium soli sp. nov., a novel species isolated from the rhizosphere of Robinia pseudoacacia L. in South Korea by using a modified culture method. Antonie van Leeuwenhoek 108:301–310

    Article  CAS  PubMed  Google Scholar 

  • Nick G, de Lajudie P, Eardly BD, Suomalainen S, Paulin L, Zhang X, Gillis M, Lindström K (1999) Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int J Syst Bacteriol 49:1359–1368

    Article  CAS  PubMed  Google Scholar 

  • Noisangiam R, Nuntagij A, Pongsilp N, Boonkerd N, Denduangboripant J, Ronson C, Teaumroong N (2010) Heavy metal tolerant Metalliresistens boonkerdii gen. nov, sp. nov., a new genus in the family Bradyrhizobiaceae isolated from soil in Thailand. Syst Appl Microbiol 33:374–382. Erratum in: Syst Appl Microbiol 34:166–168

    Article  CAS  PubMed  Google Scholar 

  • Norel FF, Elmerich C (1987) Nucleotide sequence and functional analysis of the two nifH copies of Rhizobium ORS571. Microbiology 133:1563–1576

    Article  CAS  Google Scholar 

  • Nour SM, Fernandez MP, Normand P, Cleyet-Marel JC (1994) Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.) Int J Syst Bacteriol 44:511–522

    Article  CAS  PubMed  Google Scholar 

  • Nour SM, Cleyet-Marel JC, Normand P, Fernandez MP (1995) Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int J Syst Bacteriol 45:640–648

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara M, Suzuki T, Mutoh I, Annapurna K, Arora NK, Nishimura Y, Maheshwari DK (2003) Sinorhizobium indiaense sp. nov. and Sinorhizobium abri sp. nov. isolated from tropical legumes, Sesbania rostrata and Abrus precatorius, respectively. Symbiosis 34:53–68

    Google Scholar 

  • Ohta H, Hattori T (1983) Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. Antonie van Leeuwenhoek 49:429–446

    CAS  PubMed  Google Scholar 

  • Ophel K, Kerr A (1990) Agrobacterium vitis sp. nov. for strains of Agrobacterium biovar 3 from grapevines. Int J Syst Bacteriol 40:236–241

    Article  CAS  Google Scholar 

  • Oren A, Garrity GM (2015a) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 65:741–744

    Article  Google Scholar 

  • Oren A, Garrity GM (2015b) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 65:2017–2025

    Article  Google Scholar 

  • Oren A, Garrity GM (2015c) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 65:2777–2783

    Article  Google Scholar 

  • Ormeño-Orrillo E, Menna P, Almeida LG, Ollero FJ, Nicolás MF, Pains Rodrigues E, Shigueyoshi Nakatani A, Silva Batista JS, Oliveira Chueire LM, Souza RC, Ribeiro Vasconcelos AT, Megías M, Hungria M, Martínez-Romero E (2012) Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.) BMC Genomics 13:735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panday D, Schumann P, Das SK (2011) Rhizobium pusense sp. nov., isolated from the rhizosphere of chickpea (Cicer arietinum L.) Int J Syst Evol Microbiol 61:2632–2639

    Article  PubMed  Google Scholar 

  • Parag B, Sasikala C, Ramana CV (2013) Molecular and culture dependent characterization of endolithic bacteria in two beach sand samples and description of Rhizobium endolithicum sp. nov. Antonie van Leeuwenhoek 104:1235–1244

    Article  CAS  PubMed  Google Scholar 

  • Peix A, Ramírez-Bahena MH, Flores-Félix JD, Alonso de la Vega P, Rivas R, Mateos PF, Igual JM, Martínez-Molina E, Trujillo ME, Velázquez E (2015a) Revision of the taxonomic status of the species Rhizobium lupini and reclassification as Bradyrhizobium lupini comb. nov. Int J Syst Evol Microbiol 65:1213–1219

    Article  CAS  PubMed  Google Scholar 

  • Peix A, Ramírez-Bahena MH, Velázquez E, Bedmard EJ (2015b) Bacterial associations with legumes. Crit Rev Plant Sci 34:17–42

    Article  Google Scholar 

  • Peng G, Yuan Q, Li H, Zhang W, Tan Z (2008) Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol 58:2158–2163

    Article  CAS  PubMed  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platero R, James EK, Rios C, Iriarte A, Sandes L, Zabaleta M, Battistoni F, Fabiano E (2016) Novel Cupriavidus strains isolated from root nodules of native Uruguayan Mimosa species. Appl Environ Microbiol. pii: AEM.04142-15

    Google Scholar 

  • Pueppke SG, Broughton WJ (1999) Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant Microbe Interact 12:293–318

    Article  CAS  PubMed  Google Scholar 

  • Puławska J, Kuzmanović N, Willems A, Pothier JF (2016) Pararhizobium polonicum sp. nov. isolated from tumors on stone fruit rootstocks. Syst Appl Microbiol 39:164–169

    Article  PubMed  Google Scholar 

  • Qin W, Deng ZS, Xu L, Wang NN, Wei GH (2012) Rhizobium helanshanense sp. nov., a bacterium that nodulates Sphaerophysa salsula (Pall.) DC. in China. Arch Microbiol 194:371–378

    Article  CAS  PubMed  Google Scholar 

  • Quan ZX, Bae HS, Baek JH, Chen WF, Im WT, Lee ST (2005) Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. Int J Syst Evol Microbiol 55:2543–2549

    Article  CAS  PubMed  Google Scholar 

  • Radeva G, Jurgens G, Niemi M, Nick G, Suominen L, Lindström K (2001) Description of two biovars in the Rhizobium galegae species: Biovar orientalis and biovar officinalis. Syst Appl Microbiol 24:192–205

    Article  CAS  PubMed  Google Scholar 

  • Radl V, Simões-Araújo JL, Leite J, Passos SR, Martins LM, Xavier GR, Rumjanek NG, Baldani JI, Zilli JE (2014) Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil. Int J Syst Evol Microbiol 64:725–730

    Article  PubMed  Google Scholar 

  • Ramana CV, Parag B, Girija KR, Ram BR, Ramana VV, Sasikala C (2013) Rhizobium subbaraonis sp. nov., an endolithic bacterium isolated from beach sand. Int J Syst Evol Microbiol 63:581–585

    Article  CAS  PubMed  Google Scholar 

  • Ramírez Bahena MH, Flores Félix JD, Chahboune R, Toro M, Velázquez E, Peix A (2016) Bradyrhizobium centrosemae (symbiovar centrosemae) sp. nov., Bradyrhizobium americanum (symbiovar phaseolarum) sp. nov. and a new symbiovar (tropici) of Bradyrhizobium viridifuturi establish symbiosis with Centrosema species native to America. Syst Appl Microbiol 39:378–383

    Article  PubMed  Google Scholar 

  • Ramírez-Bahena MH, García-Fraile P, Peix A, Valverde A, Rivas R, Igual JM, Mateos PF, Martínez-Molina E, Velázquez E (2008) Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol 58:2484–2490

    Article  PubMed  CAS  Google Scholar 

  • Ramírez-Bahena MH, Peix A, Rivas R, Camacho M, Rodríguez-Navarro DN, Mateos PF, Martínez-Molina E, Willems A, Velázquez E (2009) Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus. Int J Syst Evol Microbiol 59:1929–1934

    Article  PubMed  Google Scholar 

  • Ramírez-Bahena MH, Hernández M, Peix A, Velázquez E, León-Barrios M (2012) Mesorhizobial strains nodulating Anagyris latifolia and Lotus berthelotii in Tamadaya ravine (Tenerife, Canary Islands) are two symbiovars of the same species, Mesorhizobium tamadayense sp. nov. Syst Appl Microbiol 35:334–341

    Article  PubMed  Google Scholar 

  • Ramírez-Bahena MH, Chahboune R, Peix A, Velázquez E (2013a) Reclassification of Agromonas oligotrophica into the genus Bradyrhizobium as Bradyrhizobium oligotrophicum comb. nov. Int J Syst Evol Microbiol 63:1013–1016

    Article  PubMed  Google Scholar 

  • Ramírez-Bahena MH, Chahboune R, Velázquez E, Gómez-Moriano A, Mora E, Peix A, Toro M (2013b) Centrosema is a promiscuous legume nodulated by several new putative species and symbiovars of Bradyrhizobium in various American countries. Syst Appl Microbiol 36:392–400

    Article  PubMed  CAS  Google Scholar 

  • Rashid MH, Young JP, Everall I, Clercx P, Willems A, Santhosh Braun M, Wink M (2015) Average nucleotide identity of genome sequences supports the description of Rhizobium lentis sp. nov., Rhizobium bangladeshense sp. nov. and Rhizobium binae sp. nov. from lentil (Lens culinaris) nodules. Int J Syst Evol Microbiol 65:3037–3045

    Article  PubMed  CAS  Google Scholar 

  • Rasolomampianina R, Bailly X, Fetiarison R, Rabevohitra R, Béna G, Ramaroson L, Raherimandimby M, Moulin L, De Lajudie P, Dreyfus B, Avarre JC (2005) Nitrogen-fixing nodules from rose wood legume trees (Dalbergia spp.) endemic to Madagascar host seven different genera belonging to alpha- and beta-Proteobacteria. Mol Ecol 14:4135–4146

    Article  CAS  PubMed  Google Scholar 

  • Relic B, Perret X, Estrada-García MT, Kopcinska J, Golinowski W, Krishnan HB, Pueppke SG, Broughton WJ (1994) Nod factors of Rhizobium are a key to the legume door. Mol Microbiol 13:171–178

    Article  CAS  PubMed  Google Scholar 

  • Ren d W, Chen WF, Sui XH, Wang ET, Chen WX (2011a) Rhizobium vignae sp. nov., a symbiotic bacterium isolated from multiple legume species. Int J Syst Evol Microbiol 61:580–586

    Article  CAS  Google Scholar 

  • Ren d W, Wang ET, Chen WF, Sui XH, Zhang XX, Liu HC, Chen WX (2011b) Rhizobium herbae sp. nov. and Rhizobium giardinii-related bacteria, minor microsymbionts of various wild legumes in China. Int J Syst Evol Microbiol 61:1912–1920

    Article  CAS  Google Scholar 

  • Ribeiro RA, Rogel MA, López-López A, Ormeño-Orrillo E, Barcellos FG, Martínez J, Thompson FL, Martínez-Romero E, Hungria M (2012) Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov. Int J Syst Evol Microbiol 62:1179–1184

    Article  PubMed  Google Scholar 

  • Ribeiro RA, Martins TB, Ormeño-Orrillo E, Marçon Delamuta JR, Rogel MA, Martínez-Romero E, Hungria M (2015) Rhizobium ecuadorense sp. nov., an indigenous N2-fixing symbiont of the Ecuadorian common bean (Phaseolus vulgaris L.) genetic pool. Int J Syst Evol Microbiol 65:3162–3169

    Article  CAS  PubMed  Google Scholar 

  • Rincón-Rosales R, Lloret L, Ponce E, Martínez-Romero E (2009) Rhizobia with different symbiotic efficiencies nodulate Acaciella angustissima in Mexico, including Sinorhizobium chiapanecum sp. nov. which has common symbiotic genes with Sinorhizobium mexicanum. FEMS Microbiol Ecol 67:103–117

    Article  PubMed  CAS  Google Scholar 

  • Rincón-Rosales R, Villalobos-Escobedo JM, Rogel MA, Martinez J, Ormeño-Orrillo E, Martínez-Romero E (2013) Rhizobium calliandrae sp. nov., Rhizobium mayense sp. nov. and Rhizobium jaguaris sp. nov. rhizobial species nodulating the medicinal legume Calliandra grandiflora. Int J Syst Evol Microbiol 63:3423–3429

    Article  PubMed  CAS  Google Scholar 

  • Rivas R, Velázquez E, Willems A, Vizcaíno N, Subba-Rao NS, Mateos PF, Gillis M, Dazzo FB, Martínez-Molina E (2002) A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) druce. Appl Environ Microbiol 68:5217–5222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas R, Willems A, Subba-Rao NS, Mateos PF, Dazzo FB, Kroppenstedt RM, Martínez-Molina E, Gillis M, Velázquez E (2003) Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol 26:47–53

    Article  CAS  PubMed  Google Scholar 

  • Rivas R, Willems A, Palomo JL, García-Benavides P, Mateos PF, Martínez-Molina E, Gillis M, Velázquez E (2004) Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumour-like deformations. Int J Syst Evol Microbiol 54:1271–1275

    Article  CAS  PubMed  Google Scholar 

  • Rivas R, Laranjo M, Mateos PF, Oliveira S, Martínez-Molina E, Velázquez E (2007) Strains of Mesorhizobium amorphae and Mesorhizobium tianshanense, carrying symbiotic genes of common chickpea endosymbiotic species, constitute a novel biovar (ciceri) capable of nodulating Cicer arietinum. Lett Appl Microbiol 44:412–418

    Article  CAS  PubMed  Google Scholar 

  • Robledo M, Velázquez E, Ramírez-Bahena MH, García-Fraile P, Pérez-Alonso A, Rivas R, Martínez-Molina E, Mateos PF (2011) The celC gene, a new phylogenetic marker useful for taxonomic studies in Rhizobium. Syst Appl Microbiol 34:393–399

    Article  CAS  PubMed  Google Scholar 

  • Roche P, Maillet F, Plazanet C, Debelle F, Ferro M, Truchet G, Prome JC, Denarié J (1996) The common nodabc genes of Rhizobium meliloti are host-range determinants. Proc Natl Acad Sci U S A 93:15305–15310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogel MA, Hernández-Lucas I, Kuykendall LD, Balkwill DL, Martínez-Romero E (2001) Nitrogen-fixing nodules with Ensifer adhaerens harboring Rhizobium tropici symbiotic plasmids. Appl Environ Microbiol 67:3264–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogel MA, Ormeño-Orrillo E, Martinez Romero E (2011) Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 34:96–104

    Article  PubMed  Google Scholar 

  • Román-Ponce B, Jing Zhang Y, Soledad Vásquez-Murrieta M, Hua Sui X, Feng Chen W, Carlos Alberto Padilla J, Wu Guo X, Lian Gao J, Yan J, Hong Wei G, Tao Wang E (2016) Rhizobium acidisoli sp. nov., isolated from root nodules of Phaseolus vulgaris in acid soils. Int J Syst Evol Microbiol 66:398–406

    Article  PubMed  CAS  Google Scholar 

  • Rome S, Fernandez MP, Brunel B, Normand P, Cleyet-Marel JC (1996) Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. Int J Syst Bacteriol 46:972–980

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg C, Boistard P, Dénarié J, Casse-Delbart F (1981) Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti. Mol Gen Genetics 184:326–333

    CAS  Google Scholar 

  • Rozahon M, Ismayil N, Hamood B, Erkin R, Abdurahman M, Mamtimin H, Abdukerim M, Lal R, Rahman E (2014) Rhizobium populi sp. nov., an endophytic bacterium isolated from Populus euphratica. Int J Syst Evol Microbiol 64:3215–3221

    Article  CAS  PubMed  Google Scholar 

  • Saïdi S, Ramírez-Bahena MH, Santillana N, Zúñiga D, Álvarez-Martínez E, Peix A, Mhamdi R, Velázquez E (2014) Rhizobium laguerreae sp. nov. nodulates Vicia faba on several continents. Int J Syst Evol Microbiol 64:242–247

    Article  PubMed  CAS  Google Scholar 

  • Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schofield PR, Watson JM (1986) DNA sequence of Rhizobium trifolii nodulation genes reveals a reiterated and potentially regulatory sequence preceding nodABC and nodFE. Nucl Acids Res 14:2891–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholla MH, Elkan GH (1984) Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int J Syst Bacteriol 34:484–486

    Article  Google Scholar 

  • Segovia L, Young JP, Martínez-Romero E (1993) Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol 43:374–377

    Article  CAS  PubMed  Google Scholar 

  • Shamseldin A, Carro L, Peix A, Velázquez E, Moawad H, Sadowsky MJ (2016) The symbiovar trifolii of Rhizobium bangladeshense and Rhizobium aegyptiacum sp. nov. nodulate Trifolium alexandrinum in Egypt. Syst Appl Microbiol. doi:10.1016/j.syapm.2016.05.002

  • Sheu SY, Chou JH, Bontemps C, Elliott GN, Gross E, James EK, Sprent JI, Young JP, Chen WM (2012) Burkholderia symbiotica sp. nov., isolated from root nodules of Mimosa spp. native to north-east Brazil. Int J Syst Evol Microbiol 62:2272–2278

    Article  CAS  PubMed  Google Scholar 

  • Sheu SY, Chen MH, Liu WY, Andrews M, James EK, Ardley JK, De Meyer SE, James TK, Howieson JG, Coutinho BG, Chen WM (2015a) Burkholderia dipogonis sp. nov., isolated from root nodules of Dipogon lignosus in New Zealand and Western Australia. Int J Syst Evol Microbiol 65:4716–4723

    Article  CAS  PubMed  Google Scholar 

  • Sheu SY, Chou JH, Bontemps C, Elliott GN, Gross E, dos Reis Junior FB, Melkonian R, Moulin L, James EK, Sprent JI, Young JP, Chen WM (2015b) Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp. Int J Syst Evol Microbiol 63:435–441

    Article  CAS  Google Scholar 

  • Sheu SY, Huang HW, Young CC, Chen WM (2015c) Rhizobium alvei sp. nov., isolated from a freshwater river. Int J Syst Evol Microbiol 65:472–478

    Article  CAS  PubMed  Google Scholar 

  • Sheu SY, Chen ZH, Young CC, Chen WM (2016) Rhizobium ipomoeae sp. nov., isolated from a water convolvulus field. Int J Syst Evol Microbiol 66:1633–1640

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Li C, Zhao L, Si M, Zhu L, Xin K, Chen C, Wang Y, Shen X, Zhang L (2016) Rhizobium gei sp. nov., a bacterial endophyte of Geum aleppicum. Int J Syst Evol Microbiol 66:4282–4288

    Article  PubMed  Google Scholar 

  • Shiraishi A, Matsushita N, Hougetsu T (2010) Nodulation in black locust by the Gammaproteobacteria Pseudomonas sp. and the Betaproteobacteria Burkholderia sp. Syst Appl Microbiol 33:269–274

    Article  CAS  PubMed  Google Scholar 

  • da Silva K, Florentino LA, Barroso da Silva KB, de Brandt E, Vandamme P, de Souza Moreira FM (2012) Cupriavidus necator isolates are able to fix nitrogen in symbiosis with different legume species. Syst Appl Microbiol 35:175–182

    Article  PubMed  CAS  Google Scholar 

  • da Silva K, De Meyer SE, Rouws LF, Farias EN, dos Santos MA, O'Hara G, Ardley JK, Willems A, Pitard RM, Zilli JE (2014) Bradyrhizobium ingae sp. nov., isolated from effective nodules of Inga laurina grown in Cerrado soil. Int J Syst Evol Microbiol 64:3395–3401

    Article  PubMed  CAS  Google Scholar 

  • Silva FV, De Meyer SE, Simões-Araújo JL, Barbé Tda C, Xavier GR, O'Hara G, Ardley JK, Rumjanek NG, Willems A, Zilli JE (2014) Bradyrhizobium manausense sp. nov., isolated from effective nodules of Vigna unguiculata grown in Brazilian Amazonian rainforest soils. Int J Syst Evol Microbiol 64:2358–2363

    Article  CAS  PubMed  Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420

    Article  Google Scholar 

  • Sokal RR, Sneath P (1963) Principles of numerical taxonomy. WH Freeman, San Francisco

    Google Scholar 

  • Souza Moreira MF, Cruz L, Miana de Faria S, Marsh T, Martínez-Romero E, de Oliveira Pedrosa F, Pitard MR, Young PWJ (2006) Azorhizobium doebereinerae sp. nov. microsymbiont of Sesbania virgata (Caz.) Pers. Syst Appl Microbiol 29:197–206

    Article  CAS  Google Scholar 

  • Squartini A, Struffi P, Döring H, Selenska-Pobell S, Tola E, Giacomini A, Vendramin E, Velázquez E, Mateos PF, Martínez-Molina E, Dazzo FB, Casella S, Nuti MP (2002) Rhizobium sullae sp. nov. (formerly ‘Rhizobium hedysari’), the root-nodule microsymbiont of Hedysarum coronarium L. Int J Syst Evol Microbiol 52:1267–1276

    CAS  PubMed  Google Scholar 

  • Steenkamp ET, Stepkowski T, Przymusiak A, Botha WJ, Law IJ (2008) Cowpea and peanut in southern Africa are nodulated by diverse Bradyrhizobium strains harboring nodulation genes that belong to the large pantropical clade common in Africa. Mol Phylogenet Evol 48:1131–1144

    Article  CAS  PubMed  Google Scholar 

  • Steenkamp ET, van Zyl E, Beukes CW, Avontuur JR, Chan WY, Palmer M, Mthombeni LS, Phalane FL, Sereme TK, Venter SN (2015) Burkholderia kirstenboschensis sp. nov. nodulates papilionoid legumes indigenous to South Africa. Syst Appl Microbiol 38:545–554

    Article  CAS  PubMed  Google Scholar 

  • Stepkowski T, Hughes CE, Law IJ, Markiewicz L, Gurda D, Chlebicka A, Moulin L (2007) Diversification of lupine Bradyrhizobium strains: evidence from nodulation gene trees. Appl Environ Microbiol 73:3254–3264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleetwood DJ, McCallum NG, Rossbach U, Stuart GS, Weaver JE, Webby RJ, De Bruijn FJ, Ronson CW (2002) Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 184:3086–3095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talbi C, Delgado MJ, Girard L, Ramírez-Trujillo A, Caballero-Mellado J, Bedmar EJ (2010) Burkholderia phymatum strains capable of nodulating Phaseolus vulgaris are present in Moroccan soils. Appl Environ Microbiol 76:4587–4591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan ZY, Kan FL, Peng GX, Wang ET, Reinhold-Hurek B, Chen WX (2001) Rhizobium yanglingense sp. nov., isolated from arid and semi-arid regions in China. Int J Syst Evol Microbiol 51:909–914

    Article  CAS  PubMed  Google Scholar 

  • Taulé C, Zabaleta M, Mareque C, Platero R, Sanjurjo L, Sicardi M, Frioni L, Battistoni F, Fabiano E (2012) New betaproteobacterial Rhizobium strains able to efficiently nodulate Parapiptadenia rigida (Benth.) Brenan. Appl Environ Microbiol 78:1692–1700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tian CF, Wang ET, Wu LJ, Han TX, Chen WF, Gu CT, Gu JG, Chen WX (2008) Rhizobium fabae sp. nov., a bacterium that nodulates Vicia faba. Int J Syst Evol Microbiol 58:2871–2875

    Article  CAS  PubMed  Google Scholar 

  • Toledo I, Lloret L, Martínez-Romero E (2003) Sinorhizobium americanus sp. nov., a new Sinorhizobium species nodulating native Acacia spp. in Mexico. Syst Appl Microbiol 26:54–64

    Article  CAS  PubMed  Google Scholar 

  • Torres Tejerizo G, Rogel MA, Ormeño-Orrillo E, Althabegoiti MJ, Nilsson JF, Niehaus K, Schlüter A, Pühler A, Del Papa MF, Lagares A, Martínez-Romero E, Pistorio M (2016) Rhizobium favelukesii sp. nov., isolated from the root nodules of alfalfa (Medicago sativa L.) Int J Syst Evol Microbiol 66:4451–4457

    Article  PubMed  Google Scholar 

  • Trujillo ME, Willems A, Abril A, Planchuelo AM, Rivas R, Ludeña D, Mateos PF, Martínez-Molina E, Velázquez E (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71:1318–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turdahon M, Osman G, Hamdun M, Yusuf K, Abdurehim Z, Abaydulla G, Abdukerim M, Fang C, Rahman E (2013) Rhizobium tarimense sp. nov., isolated from soil in the ancient Khiyik River. Int J Syst Evol Microbiol 63:2424–2429

    Article  CAS  PubMed  Google Scholar 

  • Validation List no. 107 (2006) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 56:1–6

    Article  Google Scholar 

  • Valverde A, Velázquez E, Fernández-Santos F, Vizcaíno N, Rivas R, Mateos PF, Martínez-Molina E, Igual JM, Willems A (2005) Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989

    Article  CAS  PubMed  Google Scholar 

  • Valverde A, Igual JM, Peix A, Cervantes E, Velázquez E (2006) Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris. Int J Syst Evol Microbiol 56:2631–2637

    Article  CAS  PubMed  Google Scholar 

  • Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289

    Article  PubMed  Google Scholar 

  • Vandamme P, Goris J, Chen WM, de Vos P, Willems A (2002) Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512

    Article  PubMed  Google Scholar 

  • Velázquez E, Igual JM, Willems A, Fernández MP, Muñoz E, Mateos PF, Abril A, Toro N, Normand P, Cervantes E, Gillis M, Martínez-Molina E (2001) Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evol Microbiol 51:1011–1021

    Article  PubMed  Google Scholar 

  • Velázquez E, Peix A, Zurdo-Piñeiro JL, Palomo JL, Mateos PF, Rivas R, Muñoz-Adelantado E, Toro N, García-Benavides P, Martínez-Molina E (2005) The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumours or hairy roots in plants. Mol Plant Microbe Interact 18:1325–1332

    Article  PubMed  CAS  Google Scholar 

  • Velázquez E, García-Fraile P, Ramírez-Bahena MH, Rivas R, Martínez-Molina E (2010a) Bacteria involved in nitrogen-fixing legume symbiosis: current taxonomic perspective. In: Khan MS, Zaidi A, Mussarrat J (eds) Microbes for legume improvement. Springer, Germany, pp 1–25

    Google Scholar 

  • Velázquez E, Palomo JL, Rivas R, Guerra H, Peix A, Trujillo ME, García-Benavides P, Mateos PF, Wabiko H, Martínez-Molina E (2010b) Analysis of core genes supports the reclassification of strains Agrobacterium radiobacter K84 and Agrobacterium tumefaciens AKE10 into the species Rhizobium rhizogenes. Syst Appl Microbiol 33:247–251

    Article  PubMed  CAS  Google Scholar 

  • Verástegui-Valdés MM, Zhang YJ, Rivera-Orduña FN, Cheng HP, Sui XH, Wang ET (2014) Microsymbionts of Phaseolus vulgaris in acid and alkaline soils of Mexico. Syst Appl Microbiol 37:605–612

    Article  PubMed  CAS  Google Scholar 

  • Vidal C, Chantreuil C, Berge O, Mauré L, Escarré J, Béna G, Brunel B, Cleyet-Marel JC (2009) Mesorhizobium metallidurans sp. nov., a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. Int J Syst Evol Microbiol 59:850–855

    Article  CAS  PubMed  Google Scholar 

  • Villegas MC, Rome S, Mauré L, Domergue O, Gardan L, Bailly X, Cleyet-Marel JC, Brunel B (2006) Nitrogen-fixing sinorhizobia with Medicago laciniata constitute a novel biovar (bv. medicaginis) of S. meliloti. Syst Appl Microbiol 29:526–538

    Article  CAS  Google Scholar 

  • Vinuesa P, León-Barrios M, Silva C, Willems A, Jarabo-Lorenzo A, Pérez-Galdona R, Werner D, Martínez-Romero E (2005) Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55:569–575

    Article  CAS  PubMed  Google Scholar 

  • Wang ET, van Berkum P, Beyene D, Sui XH, Dorado O, Chen WX, Martínez-Romero E (1998) Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int J Syst Bacteriol 48:687–699

    Article  CAS  PubMed  Google Scholar 

  • Wang ET, Rogel MA, García-de los Santos A, Martínez-Romero J, Cevallos MA, Martínez-Romero E (1999a) Rhizobium etli bv. mimosae, a novel biovar isolated from Mimosa affinis. Int J Syst Bacteriol 49:1479–1491

    Article  CAS  PubMed  Google Scholar 

  • Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX, Martínez-Romero E (1999b) Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49:51–65

    Article  PubMed  Google Scholar 

  • Wang ET, Tan ZY, Willems A, Fernández-López M, Reinhold-Hurek B, Martínez-Romero E (2002) Sinorhizobium morelense sp. nov., a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics. Int J Syst Evol Microbiol 52:1687–1693

    CAS  PubMed  Google Scholar 

  • Wang FQ, Wang ET, Liu J, Chen Q, Sui XH, Chen WF, Chen WX (2007) Mesorhizobium albiziae sp. nov., a novel bacterium that nodulates Albizia kalkora in a subtropical region of China. Int J Syst Evol Microbiol 57:1192–1199

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wang ET, Wu LJ, Sui XH, Li Y Jr, Chen WX (2011) Rhizobium vallis sp. nov., isolated from nodules of three leguminous species. Int J Syst Evol Microbiol 61:2582–2588

    Article  PubMed  Google Scholar 

  • Wang JY, Wang R, Zhang YM, Liu HC, Chen WF, Wang ET, Sui XH, Chen WX (2013a) Bradyrhizobium daqingense sp. nov., isolated from soybean nodules. Int J Syst Evol Microbiol 63:616–624

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Chang YL, Zheng WT, Zhang D, Zhang XX, Sui XH, Wang ET, Hu JQ, Zhang LY, Chen WX (2013b) Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Syst Appl Microbiol 36:101–105

    Article  PubMed  CAS  Google Scholar 

  • Wang YC, Wang F, Hou BC, Wang ET, Chen WF, Sui XH, Chen WX, Li Y, Zhang YB (2013c) Proposal of Ensifer psoraleae sp. nov, Ensifer sesbaniae sp. nov., Ensifer morelense comb. nov. and Ensifer americanum comb. nov. Syst Appl Microbiol 36:467–473

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Cao Y, Wang ET, Qiao YJ, Jiao S, Liu ZS, Zhao L, Wei GH (2016) Biodiversity and biogeography of rhizobia associated with common bean (Phaseolus vulgaris L.) in Shaanxi Province. Syst Appl Microbiol 39:211–219

    Article  PubMed  Google Scholar 

  • Wdowiak-Wróbel S, Małek W (2010) Following phylogenetic tracks of Astragalus cicer microsymbionts. Antonie van Leeuwenhoek 97:21–34

    Article  PubMed  Google Scholar 

  • Wei GH, Wang ET, Tan ZY, Zhu ME, Chen WX (2002) Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigofera spp. and Kummerowia stipulacea. Int J Syst Evol Microbiol 52:2231–2239

    CAS  PubMed  Google Scholar 

  • Wei GH, Tan ZY, Zhu ME, Wang ET, Han SZ, Chen WX (2003) Characterization of rhizobia isolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau of China and description of Rhizobium loessense sp. nov. Int J Syst Evol Microbiol 53:1575–1583

    Article  CAS  PubMed  Google Scholar 

  • Wei G, Chen W, Zhu W, Chen C, Young JP, Bontemps C (2009) Invasive Robinia pseudoacacia in China is nodulated by Mesorhizobium and Sinorhizobium species that share similar nodulation genes with native American symbionts. FEMS Microbiol Ecol 68:320–328

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Yan S, Li D, Pang H, Li Y, Zhang J (2015) Rhizobium helianthi sp. nov., isolated from the rhizosphere of sunflower. Int J Syst Evol Microbiol 65:4455–4460

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Zhang J, Yan Q, Li S, Hong Q (2011) Rhizobium phenanthrenilyticum sp. nov., a novel phenanthrene-degrading bacterium isolated from a petroleum residue treatment system. J Gen Appl Microbiol 57:319–329

    Article  CAS  PubMed  Google Scholar 

  • Willems A, Fernández-López M, Muñoz-Adelantado E, Goris J, De Vos P, Martínez-Romero E, Toro N, Gillis M (2003) Description of new Ensifer strains from nodules and proposal to transfer Ensifer adhaerens Casida 1982 to Sinorhizobium as Sinorhizobium adhaerens comb. nov. Request for an opinion. Int J Syst Evol Microbiol 53:1207–1217

    Article  CAS  PubMed  Google Scholar 

  • Wilson JK (1939) Leguminous plants and their associated organisms. Cornell University Press, NY

    Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Stackebrandt E, Weisburg WG, Paster BJ, Madigan MT, Fowler VJ, Hahn CM, Blanz P, Gupta R, Nealson KH, Fox GE (1984) The phylogeny of purple bacteria: the alpha subdivision. Syst Appl Microbiol 5:315–326

    Article  CAS  PubMed  Google Scholar 

  • Xu LM, Ge C, Cui Z, Li J, Fan H (1995) Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int J Syst Bacteriol 45:706–711

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Shi JF, Zhao P, Chen WM, Qin W, Tang M, Wei GH (2011) Rhizobium sphaerophysae sp. nov., a novel species isolated from root nodules of Sphaerophysa salsula in China. Antonie van Leeuwenhoek 99:845–854

    Article  PubMed  Google Scholar 

  • Xu L, Zhang Y, Deng ZS, Zhao L, Wei XL, Wei GH (2013) Rhizobium qilianshanense sp. nov., a novel species isolated from root nodule of Oxytropis ochrocephala Bunge in China. Antonie van Leeuwenhoek 103:559–565

    Article  PubMed  Google Scholar 

  • Yan H, Yan J, Sui XH, Wang ET, Chen WX, Zhang XX, Chen WF (2016) Ensifer glycinis sp. nov., an novel rhizobial species associated with Glycine spp. Int J Syst Evol Microbiol. doi:10.1099/ijsem.0.001120

  • Yan J, Yan H, Liu LX, Chen WF, Zhang XX, Verástegui-Valdés MM, Wang ET, Han XZ (2017) Rhizobium hidalgonense sp. nov., a nodule endophytic bacterium of Phaseolus vulgaris in acid soil. Arch Microbiol 199:97–104

    Article  CAS  PubMed  Google Scholar 

  • Yanagi M, Yamasato K (1993) Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett 107:115–120

    Article  CAS  PubMed  Google Scholar 

  • Yao ZY, Kan FL, Wang ET, Wei GH, Chen WX (2002) Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52:2219–2230

    CAS  PubMed  Google Scholar 

  • Yao LJ, Shen YY, Zhan JP, Xu W, Cui GL, Wei GH (2012) Rhizobium taibaishanense sp. nov., isolated from a root nodule of Kummerowia striata. Int J Syst Evol Microbiol 62:335–341

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Sui XH, Zhang XX, Wang ET, Chen WX (2015) Bradyrhizobium erythrophlei sp. nov. and Bradyrhizobium ferriligni sp. nov., isolated from effective nodules of Erythrophleum fordii. Int J Syst Evol Microbiol 65:1831–1837

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Kang SJ, Yi HS, Oh TK, Ryu CM (2010) Rhizobium soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 60:1387–1393

    Article  CAS  PubMed  Google Scholar 

  • Young JM (2003) The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen et al. 1988, and Sinorhizobium morelense Wang et al. 2002 is a later synonym of Ensifer adhaerens Casida 1982. Is the combination “Sinorhizobium adhaerens” Casida 1982 Willems et al. 2003 legitimate? Request for an opinion. Int J Syst Evol Microbiol 53:2107–2110

    Article  CAS  PubMed  Google Scholar 

  • Young JM, Kuykendall LD, Martínez -Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Cloutier S, Tambong JT, Bromfield ES (2014) Bradyrhizobium ottawaense sp. nov., a symbiotic nitrogen fixing bacterium from root nodules of soybeans in Canada. Int J Syst Evol Microbiol 64:3202–3207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan CG, Jiang Z, Xiao M, Zhou EM, Kim CJ, Hozzein WN, Park DJ, Zhi XY, Li WJ (2016) Mesorhizobium sediminum sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 66:4797–4802

    Article  PubMed  Google Scholar 

  • Zhang RJ, Hou BC, Wang ET, Li Y Jr, Zhang XX, Chen WX (2011a) Rhizobium tubonense sp. nov., isolated from root nodules of Oxytropis glabra. Int J Syst Evol Microbiol 61:512–517

    Article  CAS  PubMed  Google Scholar 

  • Zhang GX, Ren SZ, Xu MY, Zeng GQ, Luo HD, Chen JL, Tan ZY, Sun GP (2011b) Rhizobium borbori sp. nov., aniline-degrading bacteria isolated from activated sludge. Int J Syst Evol Microbiol 61:816–822

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Sun L, Ma X, Sui XH, Jiang R (2011c) Rhizobium pseudoryzae sp. nov., isolated from the rhizosphere of rice. Int J Syst Evol Microbiol 61:2425–2429

    Article  CAS  PubMed  Google Scholar 

  • Zhang YM, Li Y Jr, Chen WF, Wang ET, Sui XH, Li QQ, Zhang YZ, Zhou YG, Chen WX (2012a) Bradyrhizobium huanghuaihaiense sp. nov., an effective symbiotic bacterium isolated from soybean (Glycine max L.) nodules. Int J Syst Evol Microbiol 62:1951–1957

    Article  CAS  PubMed  Google Scholar 

  • Zhang JJ, Liu TY, Chen WF, Wang ET, Sui XH, Zhang XX, Li Y, Li Y, Chen WX (2012b) Mesorhizobium muleiense sp. nov., nodulating with Cicer arietinum L. Int J Syst Evol Microbiol 62:2737–2742

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li B, Wang H, Sui X, Ma X, Hong Q, Jiang R (2012c) Rhizobium petrolearium sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 62:1871–1876

    Article  CAS  PubMed  Google Scholar 

  • Zhang XX, Tang X, Sheirdil RA, Sun L, Ma XT (2014a) Rhizobium rhizoryzae sp. nov., isolated from rice roots. Int J Syst Evol Microbiol 64:1373–1377

    Article  CAS  PubMed  Google Scholar 

  • Zhang JJ, Yu T, Lou K, Mao PH, Wang ET, Chen WF, Chen WX (2014b) Genotypic alteration and competitive nodulation of Mesorhizobium muleiense against exotic chickpea rhizobia in alkaline soils. Syst Appl Microbiol 37:520–524

    Article  PubMed  Google Scholar 

  • Zhang L, Shi X, Si M, Li C, Zhu L, Zhao L, Shen X, Wang Y (2014c) Rhizobium smilacinae sp. nov., an endophytic bacterium isolated from the leaf of Smilacina japonica. Antonie van Leeuwenhoek 106:715–723

    Article  PubMed  Google Scholar 

  • Zhang XX, Gao JS, Cao YH, Sheirdil RA, Wang XC, Zhang L (2015a) Rhizobium oryzicola sp. nov., potential plant-growth-promoting endophytic bacteria isolated from rice roots. Int J Syst Evol Microbiol 65:2931–2936

    Article  CAS  PubMed  Google Scholar 

  • Zhang YJ, Zheng WT, Everall I, Young JP, Zhang XX, Tian CF, Sui XH, Wang ET, Chen WX (2015b) Rhizobium anhuiense sp. nov., isolated from effective nodules of Vicia faba and Pisum sativum. Int J Syst Evol Microbiol 65:2960–2967

    Article  CAS  PubMed  Google Scholar 

  • Zhao CT, Wang ET, Zhang YM, Chen WF, Sui XH, Chen WX, Liu HC, Zhang XX (2012) Mesorhizobium silamurunense sp. nov., isolated from root nodules of Astragalus species. Int J Syst Evol Microbiol 62:2180–2186

    Article  CAS  PubMed  Google Scholar 

  • Zhao JJ, Zhang J, Sun L, Zhang RJ, Zhang CW, Yin HQ, Zhang XX (2016) Rhizobium oryziradicis sp. nov., isolated from the root of rice. Int J Syst Evol Microbiol. doi:10.1099/ijsem.0.001724

  • Zheng WT, Li Y Jr, Wang R, Sui XH, Zhang XX, Zhang JJ, Wang ET, Chen WX (2013) Mesorhizobium qingshengii sp. nov., isolated from effective nodules of Astragalus sinicus. Int J Syst Evol Microbiol 63:2002–2007

    Article  CAS  PubMed  Google Scholar 

  • Zhou PF, Chen WM, Wei GH (2010) Mesorhizobium robiniae sp. nov., isolated from root nodules of Robinia pseudoacacia. Int J Syst Evol Microbiol 60:2552–2556

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Li Q, Jiang H, Lindström K, Zhang X (2013) Mesorhizobium sangaii sp. nov., isolated from the root nodules of Astragalus luteolus and Astragalus ernestii. Int J Syst Evol Microbiol 63:2794–2799

    Article  CAS  PubMed  Google Scholar 

  • Zhu YJ, Kun J, Chen YL, Wang SK, Sui XH, Kang LH (2015) Mesorhizobium acaciae sp. nov., isolated from root nodules of Acacia melanoxylon R. Br. Int J Syst Evol Microbiol 65:3558–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zilli JE, Baraúna AC, da Silva K, De Meyer SE, Farias EN, Kaminski PE, da Costa IB, Ardley JK, Willems A, Camacho NN, Dourado Fdos S, O'Hara G (2014) Bradyrhizobium neotropicale sp. nov, isolated from effective nodules of Centrolobium paraense. Int J Syst Evol Microbiol 64:3950–3957

    Article  PubMed  CAS  Google Scholar 

  • Zurdo-Piñeiro JL, Rivas R, Trujillo ME, Vizcaíno N, Carrasco JA, Chamber M, Palomares A, Mateos PF, Martínez-Molina E, Velázquez E (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788

    Article  PubMed  CAS  Google Scholar 

  • Zurdo-Piñeiro JL, García-Fraile P, Rivas R, Peix A, León-Barrios M, Willems A, Mateos PF, Martínez-Molina E, Velázquez E, van Berkum P (2009) Rhizobia from Lanzarote, the Canary Islands, that nodulate Phaseolus vulgaris have characteristics in common with Sinorhizobium meliloti from mainland Spain. Appl Environ Microbiol 75:2354–2359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zurkowski W, Lorkiewicz Z (1979) Plasmid-mediated control of nodulation in Rhizobium trifolii. Arch Microbiol 123:195–201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank our numerous collaborators and students involved in this research over the years. Funding was provided by Ministerio de Economía, Industria y Competitividad (MINECO) and Junta de Castilla y León.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Encarna Velázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Velázquez, E., García-Fraile, P., Ramírez-Bahena, MH., Rivas, R., Martínez-Molina, E. (2017). Current Status of the Taxonomy of Bacteria Able to Establish Nitrogen-Fixing Legume Symbiosis. In: Zaidi, A., Khan, M., Musarrat, J. (eds) Microbes for Legume Improvement. Springer, Cham. https://doi.org/10.1007/978-3-319-59174-2_1

Download citation

Publish with us

Policies and ethics