Skip to main content

Harnessing Butterflies: Theory and Practice of the Stochastic Seasonal to Interannual Prediction System (StocSIPS)

  • Chapter
  • First Online:
Advances in Nonlinear Geosciences

Abstract

The atmosphere is governed by continuum mechanics and thermodynamics yet simultaneously obeys statistical turbulence laws. Up until its deterministic predictability limit (τ w ≈ 10 days), only general circulation models (GCMs) have been used for prediction; the turbulent laws being still too difficult to exploit. However, beyond τ w —in macroweather—the GCMs effectively become stochastic with internal variability fluctuating about the model—not the real world—climate and their predictions are poor. In contrast, the turbulent macroweather laws become advantageously notable due to (a) low macroweather intermittency that allows for a Gaussian approximation, and (b) thanks to a statistical space-time factorization symmetry that (for predictions) allows much decoupling of the strongly correlated spatial degrees of freedom. The laws imply new stochastic predictability limits. We show that pure macroweather—such as in GCMs without external forcings (control runs)—can be forecast nearly to these limits by the ScaLIng Macroweather Model (SLIMM) that exploits huge system memory that forces the forecasts to converge to the real world climate.

To apply SLIMM to the real world requires pre-processing to take into account anthropogenic and other low frequency external forcings. We compare the overall Stochastic Seasonal to Interannual Prediction System (StocSIPS, operational since April 2016) with a classical GCM (CanSIPS) showing that StocSIPS is superior for forecasts 2 months and further in the future, particularly over land. In addition, the relative advantage of StocSIPS increases with forecast lead time.

In this chapter we review the science behind StocSIPS and give some details of its implementation and we evaluate its skill both absolute and relative to CanSIPS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baillie, R.T., and S.-K. Chung. 2002. Modeling and forecasting from trend-stationary long memory models with applications to climatology. International Journal of Forecasting 18: 215–226.

    Article  Google Scholar 

  • Biagini, F., Y. Hu, B. Øksendal, and T. Zhang. 2008. Stochastic calculus for fractional Brownian motion and applications. London: Springer-Verlag.

    Book  Google Scholar 

  • Chen, W., S. Lovejoy, and J.P. Muller. 2016. Mars’ atmosphere: The sister planet, our statistical twin. Journal of Geophysical Research—Atmospheres 121: 11968–11988. doi:10.1002/2016JD025211.

    Article  Google Scholar 

  • Compo, G.P., et al. 2011. The twentieth century reanalysis project. Quarterly J. Roy. Meteorol. Soc. 137: 1–28. doi:10.1002/qj.776.

    Article  Google Scholar 

  • Del Rio Amador, L. 2017. The stochastic seasonal to interannual prediction system. Montreal: McGill University.

    Google Scholar 

  • Garcıa-Serrano, J., and F. J. Doblas-Reyes (2012), On the assessment of near-surface global temperature and North Atlantic multi-decadal variability in the ENSEMBLES decadal hindcast, Climate Dynamics, 39, 2025–2040 doi: 10.1007/s00382-012-1413-1.

  • Gripenberg, G., and I. Norros. 1996. On the Prediction of Fractional Brownian Motion. Journal of Applied Probability 33: 400–410.

    Article  Google Scholar 

  • Guemas, V., F.J. Doblas-Reyes, I. Andreu-Burillo, and M. Asif. 2013. Retrospective prediction of the global warming slowdown in the past decade. Nature Climate Change 3: 649–653.

    Article  Google Scholar 

  • Hasselmann, K. 1976. Stochastic climate models, part I: Theory. Tellus 28: 473–485.

    Article  Google Scholar 

  • Hébert, R., and S. Lovejoy. 2015. The runaway Green’s function effect: Interactive comment on “Global warming projections derived from an observation-based minimal model” by K. Rypdal. Earth System Dynamics Discovery 6: C944–C953.

    Google Scholar 

  • Hebert, R., S. Lovejoy, and A. de Vernal. 2017. A scaling model for the forced climate variability in the anthropocene. Climate Dynamics. (in preparation).

    Google Scholar 

  • Hirchoren, G.A., and D.S. Arantes. 1998. Predictors for the discrete time fractional Gaussian processes. In Telecommunications symposium. ITS '98 proceedings, SBT/IEEE international, 49–53. Sao Paulo: IEEE.

    Chapter  Google Scholar 

  • Hirchoren, G.A., and C.E. D’attellis. 1998. Estimation of fractal signals, using wavelets and filter banks. IEEE Transactions on Signal Processing 46 (6): 1624–1630.

    Article  Google Scholar 

  • Kolesnikov, V.N., and A.S. Monin. 1965. Spectra of meteorological field fluctuations. Izvestiya, Atmospheric and Oceanic Physics 1: 653–669.

    Google Scholar 

  • Lean, J.L., and D.H. Rind. 2008. How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophysical Research Letters 35: L18701. doi:10.1029/2008GL034864.

    Article  Google Scholar 

  • Lilley, M., S. Lovejoy, D. Schertzer, K.B. Strawbridge, and A. Radkevitch. 2008. Scaling turbulent atmospheric stratification. Part II: Empirical study of the the stratification of the intermittency. Quarterly Journal of the Royal Meteorological Society 134: 301–315. doi:10.1002/qj.1202.

    Article  Google Scholar 

  • Lovejoy, S. 2014a. Scaling fluctuation analysis and statistical hypothesis testing of anthropogenic warming. Climate Dynamics 42: 2339–2351. doi:10.1007/s00382-014-2128-2.

    Article  Google Scholar 

  • ———. 2014b. Return periods of global climate fluctuations and the pause. Geophysical Research Letters 41: 4704–4710. doi:10.1002/2014GL060478.

    Article  Google Scholar 

  • ———. 2015a. A voyage through scales, a missing quadrillion and why the climate is not what you expect. Climate Dynamics 44: 3187–3210. doi:10.1007/s00382-014-2324-0.

    Article  Google Scholar 

  • ———. 2015b. Using scaling for macroweather forecasting including the pause. Geophysical Research Letters 42: 7148–7155. doi:10.1002/2015GL065665.

    Article  Google Scholar 

  • ———. 2017. How accurately do we know the temperature of the surface of the earth? Climate Dynamics. (in press).

    Google Scholar 

  • Lovejoy, S., and M.I.P. de Lima. 2015. The joint space-time statistics of macroweather precipitation, space-time statistical factorization and macroweather models. Chaos 25: 075410. doi:10.1063/1.4927223.

    Article  Google Scholar 

  • Lovejoy, S., and D. Schertzer. 1986. Scale invariance in climatological temperatures and the local spectral plateau. Annales Geophysicae 4B: 401–410.

    Google Scholar 

  • ———. 2007. Scale, scaling and multifractals in geophysics: Twenty years on. In Nonlinear dynamics in geophysics, ed. J.E.A.A. Tsonis. New York, NY: Elsevier.

    Google Scholar 

  • ———. 2010. Towards a new synthesis for atmospheric dynamics: Space-time cascades. Atmospheric Research 96: 1–52. doi:10.1016/j.atmosres.2010.01.004.

    Article  Google Scholar 

  • ———. 2012. Haar wavelets, fluctuations and structure functions: Convenient choices for geophysics. Nonlinear Processes in Geophysics 19: 1–14. doi:10.5194/npg-19-1-2012.

    Article  Google Scholar 

  • ———. 2013. The weather and climate: Emergent laws and multifractal cascades., 496 pp. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lovejoy, S., A.F. Tuck, S.J. Hovde, and D. Schertzer. 2007. Is isotropic turbulence relevant in the atmosphere? Geophysical Research Letters 34: L14802. doi:10.1029/2007GL029359.

    Article  Google Scholar 

  • Lovejoy, S., D. Schertzer, M. Lilley, K.B. Strawbridge, and A. Radkevitch. 2008. Scaling turbulent atmospheric stratification. Part I: Turbulence and waves. Quarterly Journal of the Royal Meteorological Society 134: 277–300. doi:10.1002/qj.201.

    Article  Google Scholar 

  • Lovejoy, S., D. Schertzer, and D. Varon. 2013. Do GCM’s predict the climate…. or macroweather? Earth System Dynamics 4: 1–16. doi:10.5194/esd-4-1-2013.

    Article  Google Scholar 

  • Lovejoy, S., J.P. Muller, and J.P. Boisvert. 2014. On Mars too, expect macroweather. Geophysical Research Letters 41: 7694–7700. doi:10.1002/2014GL061861.

    Article  Google Scholar 

  • Lovejoy, S., L. del Rio Amador, and R. Hébert. 2015. The ScaLIng Macroweather Model (SLIMM): Using scaling to forecast global-scale macroweather from months to decades. Earth System Dynamics 6: 1–22. http://www.earth-syst-dynam.net/6/1/2015/. doi:10.5194/esd-6-1-2015.

    Article  Google Scholar 

  • Mandelbrot, B.B., and J.W. Van Ness. 1968. Fractional Brownian motions, fractional noises and applications. SIAM Review 10: 422–450.

    Article  Google Scholar 

  • Merryfield, W.J., B. Denis, J.-S. Fontecilla, W.-S. Lee, S. Kharin, J. Hodgson, and B. Archambault. 2011. The Canadian Seasonal to Interannual Prediction System (CanSIPS): An overview of its design and operational implementationRep., 51pp. Environment Canada.

    Google Scholar 

  • Newman, M. 2013. An empirical benchmark for decadal forecasts of global surface temperature anomalies. Journal of Climate 26: 5260–5269. doi:10.1175/JCLI-D-12-00590.1.

    Article  Google Scholar 

  • Panofsky, H.A., and I. Van der Hoven. 1955. Spectra and cross-spectra of velocity components in the mesometeorlogical range. Quarterly Journal of the Royal Meteorological Society 81: 603–606.

    Article  Google Scholar 

  • Papoulis, A. 1965. Probability, random variables and stochastic processes. New York, NY: Mc Graw Hill.

    Google Scholar 

  • Pauluis, O. 2011. Water vapor and mechanical work: a comparison of carnot and steam cycles. Journal of the Atmospheric Sciences 68: 91–102. doi:10.1175/2010JAS3530.1.

    Article  Google Scholar 

  • Penland, C. 1996. A stochastic model of IndoPacific sea surface temperature anomalies. Physica D 98: 534–558.

    Article  Google Scholar 

  • Penland, C., and P.D. Sardeshmuhk. 1995. The optimal growth of tropical sea surface temperature anomalies. Journal of Climate 8: 1999–2024.

    Article  Google Scholar 

  • Pinel, J., and S. Lovejoy. 2014. Atmospheric waves as scaling, turbulent phenomena. Atmospheric Chemistry and Physics 14: 3195–3210. doi:10.5194/acp-14-3195-2014.

    Article  Google Scholar 

  • Pinel, J., S. Lovejoy, and D. Schertzer. 2014. The horizontal space-time scaling and cascade structure of the atmosphere and satellite radiances. Atmospheric Research 140–141: 95–114. doi:10.1016/j.atmosres.2013.11.022.

    Article  Google Scholar 

  • Radkevitch, A., S. Lovejoy, K.B. Strawbridge, D. Schertzer, and M. Lilley. 2008. Scaling turbulent atmospheric stratification. Part III: Empirical study of space-time stratification of passive scalars using lidar data. Quarterly Journal of the Royal Meteorological Society 134: 317–335. doi:10.1002/qj.1203.

    Article  Google Scholar 

  • Ragone, F., V. Lucarini, and F. Lunkeit. 2015. A new framework for climate sensitivity and prediction: A modelling perspective. Climate Dynamics 46: 1459–1471. doi:10.1007/s00382-015-2657-3.

    Article  Google Scholar 

  • Richardson, L.F. 1926. Atmospheric diffusion shown on a distance-neighbour graph. Proceedings of the Royal Society A110: 709–737.

    Article  Google Scholar 

  • Rypdal, K. 2015. Global warming projections derived from an observation-based minimal model. Earth System Dynamics Discussions 6: 1789–1813. doi:10.5194/esdd-6-1789-2015.

    Article  Google Scholar 

  • Rypdal, M., and K. Rypdal. 2014. Long-memory effects in linear response models of Earth's temperature and implications for future global warming. Journal of Climate 27 (14): 5240–5258. doi:10.1175/JCLI-D-13-00296.1.

    Article  Google Scholar 

  • Sardeshmukh, P., G.P. Compo, and C. Penland. 2000. Changes in probability assoicated with El Nino. Journal of Climate 13: 4268–4286.

    Article  Google Scholar 

  • Schertzer, D., and S. Lovejoy. 1985. The dimension and intermittency of atmospheric dynamics. In Turbulent shear flow, ed. L.J.S. Bradbury et al., 7–33. Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • ———. 1995. From scalar cascades to Lie cascades: Joint multifractal analysis of rain and cloud processes. In Space/time variability and interdependance for various hydrological processes, ed. R.A. Feddes, 153–173. New York, NY: Cambridge University Press.

    Chapter  Google Scholar 

  • ———. 2004. Uncertainty and predictability in geophysics: Chaos and multifractal insights. In State of the planet, frontiers and challenges in geophysics, ed. R.S.J. Sparks and C.J. Hawkesworth, 317–334. Washington, DC: American Geophysical Union.

    Chapter  Google Scholar 

  • Schertzer, D., S. Lovejoy, F. Schmitt, Y. Chigirinskaya, and D. Marsan. 1997. Multifractal cascade dynamics and turbulent intermittency. Fractals 5: 427–471.

    Article  Google Scholar 

  • Schertzer, D., I. Tchiguirinskaia, S. Lovejoy, and A.F. Tuck. 2012. Quasi-geostrophic turbulence and generalized scale invariance, a theoretical reply. Atmospheric Chemistry and Physics 12: 327–336. doi:10.5194/acp-12-327-2012.

    Article  Google Scholar 

  • Schmidt, G.A., D.T. Shindell, and K. Tsigaridis. 2014. Reconciling warming trends. Nature Geoscience 7: 158–160.

    Article  Google Scholar 

  • Schwartz, S.E. 2012. Determination of Earth’s transient and equilibrium climate sensitivities from observations over the twentieth century: Strong dependence on assumed forcing. Surveys in Geophysics 33: 745–777.

    Article  Google Scholar 

  • Steinman, B.A., M.E. Mann, and S.K. Miller. 2015. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science 347: 988–991. doi:10.1126/science.1257856.

    Article  Google Scholar 

  • Suckling, E.B., E. Hawkins, G. Jan van Oldenborgh, and J.M. Eden. 2016. An empirical model for probabilistic decadal prediction: A global analysis. Climate Dynamics (submitted).

    Google Scholar 

  • Tennekes, H. 1975. Eulerian and Lagrangian time microscales in isotropic turbulence. Journal of Fluid Mechanics 67: 561–567.

    Article  Google Scholar 

  • Vallis, G. 2010. Mechanisms of climate variaiblity from years to decades. In Stochastic physics and climate modelliing, ed. P.W.T. Palmer, 1–34. Cambridge: Cambridge University Press.

    Google Scholar 

  • Van der Hoven, I. 1957. Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. Journal of Meteorology 14: 160–164.

    Article  Google Scholar 

  • Zeng, X., and K. Geil. 2017. Global warming projection in the 21st Century based on an observational data driven model. Geophysical Research Letters. (in press).

    Google Scholar 

Download references

Acknowledgements

We thank Lydia Elias, Hannah Wakeling and Weylan Thompson for undergraduate summer contributions in developing StocSIPS. We thank OURANOS for funding Lydia Elias’s summer work. We thank Dave Clark, Norberto Majlis and Yosvany Martinez (Environment Canada) for regular discussions. Hydro Quebec is thanked for partial support of L. Del Rio Amador during his PhD. The project itself was unfunded, there were no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lovejoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Lovejoy, S., Del Rio Amador, L., Hébert, R. (2018). Harnessing Butterflies: Theory and Practice of the Stochastic Seasonal to Interannual Prediction System (StocSIPS). In: Tsonis, A. (eds) Advances in Nonlinear Geosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-58895-7_17

Download citation

Publish with us

Policies and ethics