Skip to main content

Canonical Duality Method for Solving Kantorovich Mass Transfer Problem

  • Chapter
  • First Online:
Canonical Duality Theory

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 37))

Abstract

This paper addresses analytical solution to the Kantorovich mass transfer problem . Through an ingenious approximation mechanism, the Kantorovich problem is first reformulated as a variational form, which is equivalent to a nonlinear differential equation with Dirichlet boundary. The existence and uniqueness of the solution can be demonstrated by applying the canonical duality theory. Then, using the canonical dual transformation, a perfect dual maximization problem is obtained, which leads to an analytical solution to the primal problem . Its global extremality for both primal and dual problems can be identified by a triality theory. In addition, numerical maximizers for the Kantorovich problem are provided under different circumstances. Finally, the theoretical results are verified by applications to Monge’s problem. Although the problem is addressed in one-dimensional space, the theory and method can be generalized to solve high-dimensional problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrosio, L.: Lecture Notes on Optimal Transfer Problems, preprint

    Google Scholar 

  2. Ambrosio, L.: Optimal transport maps in Monge-Kantorovich problem. ICM 3, 1–3 (2002)

    MATH  Google Scholar 

  3. Bourgain, J., Brezis, H.: Sur l’équation div \(u=f\). C. R. Acad. Sci. Paris, Ser. I334, 973–976 (2002)

    Google Scholar 

  4. Caffarelli, L.A.: Allocation maps with general cost functions, in partial differential equations and applications. Lect. Notes Pure Appl. Math. 177, 29–35 (1996)

    MATH  Google Scholar 

  5. Caffarelli, L.A., Feldman, M., MCcann, R.J.: Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs. J. AMS 15, 1–26 (2001)

    Google Scholar 

  6. Dacorogna, B., Moser, J.: On a partial differential equation involving the Jacobian determinant. Ann. Inst. H. Poincaré 7, 1–26 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Dunod, Paris (1976)

    MATH  Google Scholar 

  8. Evans, L.C., Gangbo, W.: Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Am. Math. Soc. 653 (1999)

    Google Scholar 

  9. Evans, L.C.: Partial differential equations and Monge-Kantorovich mass transfer(survey paper)

    Google Scholar 

  10. Evans, L.C.: Three singular variational problems, preprint (2002)

    Google Scholar 

  11. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (2002)

    Google Scholar 

  12. Gangbo, W., McCann, R.J.: Optimal maps in Monge’s transport problem, preprint (1995)

    Google Scholar 

  13. Gangbo, W., McCann, R.J.: Optimal maps in Monge’s mass transport problem. C. R. Acad. Sci. Paris Sér. I Math. 321, 1653–1658 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Math. 177, 113–161 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gangbo, W., Świȩch, A.: Optimal maps for the multidimensional Monge-Kantorovich problem, preprint (1996)

    Google Scholar 

  16. Gao, D.Y.: Duality, triality and complementary extremum principles in non-convex parametric variational problems with applications. IMA J. Appl. Math. 61, 199–235 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gao, D.Y.: Duality Principles in Nonconvex Systems: Theory. Methods and Applications. Kluwer Academic Publishers, Boston (2000)

    Book  MATH  Google Scholar 

  18. Gao, D.Y.: Analytic solution and triality theory for nonconvex and nonsmooth variational problems with applications. Nonlinear Anal. 42(7), 1161–1193 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gao, D.Y., Lu, X.: Multiple solutions for non-convex variational boundary value problems in higher dimensions, preprint (2013)

    Google Scholar 

  20. Gao, D.Y., Ogden, R.W.: Multiple solutions to non-convex variational problems with implications for phase transitions and numerical computation. Q. Jl Mech. Appl. Math. 61(4), 497–522 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gao, D.Y., Strang, G.: Geometric nonlinearity: potential energy, complementary energy, and the gap function. Q. Appl. Math. 47(3), 487–504 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gao, D.Y., Ogden, R.W., Stravroulakis, G.: Nonsmooth and Nonconvex Mechanics: Modelling. Analysis and Numerical Methods. Kluwer Academic Publishers, Boston (2001)

    Book  Google Scholar 

  23. Kantorovich, L.V.: On the transfer of masses. Dokl. Akad. Nauk. SSSR 37, 227–229 (1942). (Russian)

    Google Scholar 

  24. Kantorovich, L.V.: On a problem of Monge. Uspekhi Mat. Nauk. 3, 225–226 (1948)

    Google Scholar 

  25. Li, Q.R., Santambrogio, F., Wang, X.J.: Regularity in Monge’s mass transfer problem. J. Math. Pures Appl. 102, 1015–1040 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications I-III, Dunod, Paris, 1968-1970

    Google Scholar 

  27. Ma, X.N., Trudinger, N.S., Wang, X.J.: Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal. 177, 151–183 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Monge, G.: Mémoire sur la théorie des déblais et de remblais, Histoire de l’Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année, pp. 666–704 (1781)

    Google Scholar 

  29. Sudakov, V.N.: Geometric problems in the theory of infinite-dimensional probability distributions. Proc. Steklov Inst. 141, 1–178 (1979)

    MathSciNet  Google Scholar 

  30. Trudinger, N.S., Wang, X.J.: On the Monge mass transfer problem. Calc. Var. 13, 19–31 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vershik, A.M.: Some remarks on the infinite-dimensional problems of linear programming. Russian Math. Surv. 25, 117–124 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The main results in this paper were obtained during a research collaboration in the Federation University Australia in August, 2015. The first author wishes to thank Professor David Gao for his hospitality and financial support. This project is partially supported by US Air Force Office of Scientific Research (AFOSR FA9550-10-1-0487 and FA9550-17-1-0151). This project is also supported by Jiangsu Planned Projects for Postdoctoral Research Funds (1601157B), Shanghai University Start-up Grant for Shanghai 1000-Talent Program Scholars, National Natural Science Foundation of China (NSFC 61673104, 71673043, 71273048, 71473036, 11471072), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Fundamental Research Funds for the Central Universities (2014B15214, 2242017K40086), Open Research Fund Program of Jiangsu Key Laboratory of Engineering Mechanics, Southeast University (LEM16B06). In particular, the authors also express their deep gratitude to the referees for their careful reading and useful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lu, X., Gao, D.Y. (2017). Canonical Duality Method for Solving Kantorovich Mass Transfer Problem. In: Gao, D., Latorre, V., Ruan, N. (eds) Canonical Duality Theory. Advances in Mechanics and Mathematics, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-58017-3_5

Download citation

Publish with us

Policies and ethics