Skip to main content

Analytic Solutions to 3-D Finite Deformation Problems Governed by St Venant–Kirchhoff Material

  • Chapter
  • First Online:
Canonical Duality Theory

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 37))

Abstract

This paper presents a detailed study on analytical solutions to a general nonlinear boundary-value problem in finite deformation theory. Based on canonical duality theory and the associated pure complementary energy principle in nonlinear elasticity proposed by Gao in (Mech Res Commun 26:31–37, 1999, [6], Wiley Encyclopedia of Electrical and Electronics Engineering, 1999, [7], Meccanica 34:169–198, 1999, [8]), we show that the general nonlinear partial differential equation for deformation is actually equivalent to an algebraic (tensor) equation in stress space. For St Venant–Kirchhoff materials, this coupled cubic algebraic equation can be solved principally to obtain all possible solutions. Our results show that for any given external source field such that the statically admissible first Piola–Kirchhoff stress field has nonzero eigenvalues, the problem has a unique global minimal solution, which is corresponding to a positive-definite second Piola–Kirchhoff stress \(\mathbf{T}\), and at most eight local solutions corresponding to negative-definite \(\mathbf{T}\). Additionally, the problem could have 15 unstable solutions corresponding to indefinite \(\mathbf{T}\). This paper demonstrates that the canonical duality theory and the pure complementary energy principle play fundamental roles in nonconvex analysis and finite deformation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai, K., Gao, D.Y., Qin, Q.H.: Post-buckling solutions of hyper-elastic beam by canonical dual finite element method. Math. Mech. Solids 19(6), 659–671 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ciarlet, P.G.: Mathematical Elasticity. Volume I: Three-Dimensional Elasticity. Elsevier Science Publishers B.V., North-Holland (1988)

    Google Scholar 

  3. Gao, D.Y.: Global extremum criteria for nonlinear elasticity. J. Appl. Math. Phys. (ZAMP) 43, 924–937 (1992)

    Article  MATH  Google Scholar 

  4. Gao, D.Y.: Dual extremum principles in finite deformation theory with applications to post-buckling analysis of extended nonlinear beam theory. Appl. Mech. Rev. 50, S64–S71 (1997)

    Article  Google Scholar 

  5. Gao, D.Y.: Duality, triality and complementary extremum principles in nonconvex parametric variational problems with applications. IMA J. Appl. Math. 61, 199–235 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gao, D.Y.: Pure complementary energy principle and triality theory in finite elasticity. Mech. Res. Commun. 26, 31–37 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gao, D.Y.: Duality-Mathematics. Wiley Encyclopedia of Electrical and Electronics Engineering, vol. 6, pp. 68–77. Wiley, New York (1999)

    Google Scholar 

  8. Gao, D.Y.: General analytic solutions and complementary variational principles for large deformation nonsmooth mechanics. Meccanica 34, 169–198 (1999)

    MathSciNet  MATH  Google Scholar 

  9. Gao, D.Y.: Duality Principles in Nonconvex Systems: Theory, Methods and Applications, xviii + 454pp. Kluwer Academic Publishers, Boston (2000)

    Google Scholar 

  10. Gao, D.Y.: Analytic solution and triality theory for nonconvex and nonsmooth variational problems with applications. Nonlinear Anal. 42, 1161–1193 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, D.Y.: Canonical dual transformation method and generalized triality theory in nonsmooth global optimization. J. Global Optim. 17, 127–160 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, D.Y.: Nonconvex semi-linear problems and canonical dual solutions. Gao, D.Y., Ogden, R.W. (eds.) Advances in Mechanics and Mathematics, vol. II, pp. 261–312. Kluwer Academic Publishers, Boston (2003)

    Google Scholar 

  13. Gao, D.Y.: Perfect duality theory and complete set of solutions to a class of global optimization. Optimization 52, 467–493 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao, D.Y.: Complementary variational principle, algorithm, and complete solutions to phase transitions in solids governed by Landau-Ginzburg equation. Math. Mech. Solids 9, 285–305 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gao, D.Y.: Canonical duality theory: unified understanding and generalized solutions for global optimization. Comput. Chem. Eng. 33, 1964–1972 (2009)

    Article  Google Scholar 

  16. Gao, D.Y., Ogden, R.W.: Multiple solutions to non-convex variational problems with implications for phase transitions and numerical computation. Q. J. Mech. Appl. Math. 61, 497–522 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gao, D.Y., Ogden, R.W.: Closed-form solutions, extremality and nonsmoothness criteria in a large deformation elasticity problem. ZAMP 59, 498–517 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gao, D.Y., Ruan, N.: Solutions to quadratic minimization problems with box and integer constraints. J. Global Optim. 47, 463–484 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gao, D.Y., Strang, G.: Geometric nonlinearity: potential energy, complementary energy, and the gap function. Q. Appl. Math. 47, 487–504 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao, D.Y., Yu, H.F.: Multi-scale modelling and canonical dual finite element method in phase transitions of solids. Int. J. Solids Struct. 45, 3660–3673 (2008)

    Article  MATH  Google Scholar 

  21. Hellinger, E.: Die allgemeine Ansätze der Mechanik der Kontinua. Encyklopädie der Mathematischen Wissenschaften IV 4, 602–694 (1914)

    Google Scholar 

  22. Koiter, W.T.: On the complementary energy theorem in nonlinear elasticity theory. In: Fichera, G. (ed.) Trends in Applications of Pure Mathematics to Mechanics. Pitman, London (1976)

    Google Scholar 

  23. Lee, S.J., Shield, R.T.: Variational principles in finite elastics. J. Appl. Math. Phys. (ZAMP) 31, 437–453 (1980)

    Article  MATH  Google Scholar 

  24. Lee, S.J., Shield, R.T.: Applications of variational principles in finite elasticity. J. Appl. Math. Phys. (ZAMP) 31, 454–472 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Levinson, M.: The complementary energy theorem in finite elasticity. J. Appl. Mech. 87, 826–828 (1965)

    Article  Google Scholar 

  26. Li, S.F., Gupta, A.: On dual configuration forces. J. Elast. 84, 13–31 (2006)

    Article  MATH  Google Scholar 

  27. Li, C., Zhou, X., Gao, D.Y.: Stable trajectory of logistic map. Nonlinear Dyn. (2014). doi:10.1007/s11071-014-1433-y

    MathSciNet  MATH  Google Scholar 

  28. Oden, J.T., Reddy, J.N.: Variational Methods in Theoretical Mechanics. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  29. Ogden, R.W.: A note on variational theorems in non-linear elastostatics. Math. Proc. Camb. Philos. Soc. 77, 609–615 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  30. Reissner, E.: On a variational theorem for finite elastic deformations. J. Math. Phys. 32, 129–135 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ruan, N., Gao, D.Y.: Global optimal solutions to a general sensor network localization problem. Perform. Eval. 75–76, 1–16 (2014)

    Article  Google Scholar 

  32. Ruan, N., Gao, D.Y.: Canonical duality approach for nonlinear dynamical systems. IMA J. Appl. Math. 79, 313–325 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ruan, N., Gao, D.Y., Jiao, Y.: Canonical dual least square method for solving general nonlinear systems of equations. Comput. Optim. Appl. 47, 335–347 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Santos, H.A.F.A., Gao, D.Y.: Canonical dual finite element method for solving post-buckling problems of a large deformation elastic beam. Int. J. Nonlinear Mech. 47, 240–247 (2011). doi:10.1016/j.ijnonlinmec.2011.05.012

    Article  Google Scholar 

  35. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, 3rd edn. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  36. Veubeke, B.F.: A new variational principle for finite elastic displacements. Int. J. Eng. Sci. 10, 745–763 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, J., Gao, D.Y., Yearwood, J.: A novel canonical dual computational approach for prion AGAAAAGA amyloid fibril molecular modeling. J. Theor. Biol. 284, 149–157 (2011). doi:10.1016/j.jtbi.2011.06.024

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the US Air Force Office of Scientific Research under the grant AFOSR FA9550-17-1-0151. Results presented in Sect. 3 were discussed with Professor Ray Ogden from University of Glasgow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Yang Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gao, D.Y., Hajilarov, E. (2017). Analytic Solutions to 3-D Finite Deformation Problems Governed by St Venant–Kirchhoff Material. In: Gao, D., Latorre, V., Ruan, N. (eds) Canonical Duality Theory. Advances in Mechanics and Mathematics, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-58017-3_3

Download citation

Publish with us

Policies and ethics