Skip to main content

Tissue Specificity: SOCE: Implications for Ca2+ Handling in Endothelial Cells

  • Chapter
  • First Online:
Store-Operated Ca²⁺ Entry (SOCE) Pathways

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 993))

Abstract

Many cellular functions of the vascular endothelium are regulated by fine-tuned global and local, microdomain-confined changes of cytosolic free Ca2+ ([Ca2+]i). Vasoactive agonist-induced stimulation of vascular endothelial cells (VECs) typically induces Ca2+ release through IP3 receptor Ca2+ release channels embedded in the membrane of the endoplasmic reticulum (ER) Ca2+ store, followed by Ca2+ entry from the extracellular space elicited by Ca2+ store depletion and referred to as capacitative or store-operated Ca2+ entry (SOCE). In vascular endothelial cells, SOCE is graded with the degree of store depletion and controlled locally in the subcellular microdomain where depletion occurs. SOCE provides distinct Ca2+ signals that selectively control specific endothelial functions: in calf pulmonary artery endothelial cells, the SOCE Ca2+ signal drives nitric oxide (an endothelium-derived relaxing factor of the vascular smooth muscle) production and controls activation and nuclear translocation of the transcription factor NFAT. Both cellular events are not affected by Ca2+ signals of comparable magnitude arising directly from Ca2+ release from intracellular stores, clearly indicating that SOCE regulates specific Ca2+-dependent cellular tasks by a unique and exclusive mechanism. This review discusses the mechanisms of intracellular Ca2+ regulation in vascular endothelial cells and the role of store-operated Ca2+ entry for endothelium-dependent smooth muscle relaxation and nitric oxide signaling, endothelial oxidative stress response, and excitation-transcription coupling in the vascular endothelium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M (2008) Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 103(11):1289–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambudkar IS, Ong HL, Liu X, Bandyopadhyay BC, Cheng KT (2007) TRPC1: the link between functionally distinct store-operated calcium channels. Cell Calcium 42(2):213–223

    Article  CAS  PubMed  Google Scholar 

  • Amcheslavsky A, Wood ML, Yeromin AV, Parker I, Freites JA, Tobias DJ, Cahalan MD (2015) Molecular biophysics of Orai store-operated Ca2+ channels. Biophys J 108(2):237–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antigny F, Jousset H, Konig S, Frieden M (2011) Thapsigargin activates Ca(2)+ entry both by store-dependent, STIM1/Orai1-mediated, and store-independent, TRPC3/PLC/PKC-mediated pathways in human endothelial cells. Cell Calcium 49(2):115–127

    Article  CAS  PubMed  Google Scholar 

  • Aromolaran AA, Blatter LA (2005) Modulation of intracellular Ca2+ release and capacitative Ca2+ entry by CaMKII inhibitors in bovine vascular endothelial cells. Am J Physiol Cell Physiol 289(6):C1426–C1436

    Article  CAS  PubMed  Google Scholar 

  • Aromolaran AS, Zima AV, Blatter LA (2007) Role of glycolytically generated ATP for CaMKII-mediated regulation of intracellular Ca2+ signaling in bovine vascular endothelial cells. Am J Physiol Cell Physiol 293(1):C106–C118

    Article  CAS  PubMed  Google Scholar 

  • Balzer M, Lintschinger B, Groschner K (1999) Evidence for a role of Trp proteins in the oxidative stress-induced membrane conductances of porcine aortic endothelial cells. Cardiovasc Res 42(2):543–549

    Article  CAS  PubMed  Google Scholar 

  • Berna-Erro A, Woodard GE, Rosado JA (2012) Orais and STIMs: physiological mechanisms and disease. J Cell Mol Med 16(3):407–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge MJ (1995) Capacitative calcium entry. Biochem J 312(Pt 1):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blatter LA, Taha Z, Mesaros S, Shacklock PS, Wier WG, Malinski T (1995) Simultaneous measurements of Ca2+ and nitric oxide in bradykinin-stimulated vascular endothelial cells. Circ Res 76(5):922–924

    Article  CAS  PubMed  Google Scholar 

  • Bogeski I, Kilch T, Niemeyer BA (2012) ROS and SOCE: recent advances and controversies in the regulation of STIM and Orai. J Physiol 590(17):4193–4200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolotina VM, Csutora P (2005) CIF and other mysteries of the store-operated Ca2+-entry pathway. Trends Biochem Sci 30(7):378–387

    Article  CAS  PubMed  Google Scholar 

  • Boss V, Wang X, Koppelman LF, Xu K, Murphy TJ (1998) Histamine induces nuclear factor of activated T cell-mediated transcription and cyclosporin A-sensitive interleukin-8 mRNA expression in human umbilical vein endothelial cells. Mol Pharmacol 54(2):264–272

    CAS  PubMed  Google Scholar 

  • Cannell MB, Sage SO (1989) Bradykinin-evoked changes in cytosolic calcium and membrane currents in cultured bovine pulmonary artery endothelial cells. J Physiol 419:555–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrier GO, Fuchs LC, Winecoff AP, Giulumian AD, White RE (1997) Nitrovasodilators relax mesenteric microvessels by cGMP-induced stimulation of Ca2+-activated K channels. Am J Physiol 273(1 Pt 2):H76–H84

    CAS  PubMed  Google Scholar 

  • Chen J, Wang Y, Nakajima T, Iwasawa K, Hikiji H, Sunamoto M, Choi DK, Yoshida Y, Sakaki Y, Toyo-Oka T (2000) Autocrine action and its underlying mechanism of nitric oxide on intracellular Ca2+ homeostasis in vascular endothelial cells. J Biol Chem 275(37):28739–28749

    Article  CAS  PubMed  Google Scholar 

  • Chen YF, Chiu WT, Chen YT, Lin PY, Huang HJ, Chou CY, Chang HC, Tang MJ, Shen MR (2011) Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci USA 108(37):15225–15230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YF, Hsu KF, Shen MR (2016) The store-operated Ca(2+) entry-mediated signaling is important for cancer spread. Biochim Biophys Acta 1863(6 Pt B):1427–1435

    Article  CAS  PubMed  Google Scholar 

  • Cheng KT, Ong HL, Liu X, Ambudkar IS (2013) Contribution and regulation of TRPC channels in store-operated Ca2+ entry. Curr Top Membr 71:149–179

    Article  CAS  PubMed  Google Scholar 

  • Cioffi DL (2010) Redox regulation of endothelial canonical transient receptor potential channels. Antioxid Redox Signal 15(6):1567–1582

    Article  CAS  Google Scholar 

  • Clapham DE (1995) Calcium signaling. Cell 80(2):259–268

    Article  CAS  PubMed  Google Scholar 

  • Courjaret R, Machaca K (2012) STIM and Orai in cellular proliferation and division. Front Biosci (Elite Ed) 4:331–341

    Article  Google Scholar 

  • Dedkova EN, Blatter LA (2002) Nitric oxide inhibits capacitative Ca2+ entry and enhances endoplasmic reticulum Ca2+ uptake in bovine vascular endothelial cells. J Physiol 539(Pt 1):77–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dedkova EN, Blatter LA (2005) Modulation of mitochondrial Ca2+ by nitric oxide in cultured bovine vascular endothelial cells. Am J Physiol Cell Physiol 289(4):C836–C845

    Article  CAS  PubMed  Google Scholar 

  • Dedkova EN, Ji X, Lipsius SL, Blatter LA (2004) Mitochondrial calcium uptake stimulates nitric oxide production in mitochondria of bovine vascular endothelial cells. Am J Physiol Cell Physiol 286(2):C406–C415

    Article  CAS  PubMed  Google Scholar 

  • Dietrich A, Kalwa H, Gudermann T (2010) TRPC channels in vascular cell function. Thromb Haemost 103(2):262–270

    Article  CAS  PubMed  Google Scholar 

  • Doan TN, Gentry DL, Taylor AA, Elliott SJ (1994) Hydrogen peroxide activates agonist-sensitive Ca(2+)-flux pathways in canine venous endothelial cells. Biochem J 297(Pt 1):209–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolor RJ, Hurwitz LM, Mirza Z, Strauss HC, Whorton AR (1992) Regulation of extracellular calcium entry in endothelial cells: role of intracellular calcium pool. Am J Physiol 262(1 Pt 1):C171–C181

    CAS  PubMed  Google Scholar 

  • Donnadieu E, Bourguignon LY (1996) Ca2+ signaling in endothelial cells stimulated by bradykinin: Ca2+ measurement in the mitochondria and the cytosol by confocal microscopy. Cell Calcium 20(1):53–61

    Article  CAS  PubMed  Google Scholar 

  • Dragoni S, Guerra G, Fiorio Pla A, Bertoni G, Rappa A, Poletto V, Bottino C, Aronica A, Lodola F, Cinelli MP, Laforenza U, Rosti V, Tanzi F, Munaron L, Moccia F (2015) A functional transient receptor potential vanilloid 4 (TRPV4) channel is expressed in human endothelial progenitor cells. J Cell Physiol 230(1):95–104

    Article  CAS  PubMed  Google Scholar 

  • Dreher D, Junod AF (1995) Differential effects of superoxide, hydrogen peroxide, and hydroxyl radical on intracellular calcium in human endothelial cells. J Cell Physiol 162(1):147–153

    Article  CAS  PubMed  Google Scholar 

  • Elliott SJ, Doan TN (1993) Oxidant stress inhibits the store-dependent Ca(2+)-influx pathway of vascular endothelial cells. Biochem J 292(Pt 2):385–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott SJ, Eskin SG, Schilling WP (1989) Effect of t-butyl-hydroperoxide on bradykinin-stimulated changes in cytosolic calcium in vascular endothelial cells. J Biol Chem 264(7):3806–3810

    CAS  PubMed  Google Scholar 

  • Fantozzi I, Zhang S, Platoshyn O, Remillard CV, Cowling RT, Yuan JX (2003) Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 285(6):L1233–L1245

    Article  CAS  PubMed  Google Scholar 

  • Fasolato C, Nilius B (1998) Store depletion triggers the calcium release-activated calcium current (ICRAC) in macrovascular endothelial cells: a comparison with Jurkat and embryonic kidney cell lines. Pflugers Arch 436(1):69–74

    Article  CAS  PubMed  Google Scholar 

  • Feske S (2010) CRAC channelopathies. Pflugers Arch 460(2):417–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441(7090):179–185

    Article  CAS  PubMed  Google Scholar 

  • Feske S, Picard C, Fischer A (2010) Immunodeficiency due to mutations in ORAI1 and STIM1. Clin Immunol 135(2):169–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorio Pla A, Gkika D (2013) Emerging role of TRP channels in cell migration: from tumor vascularization to metastasis. Front Physiol 4:311

    Article  PubMed  PubMed Central  Google Scholar 

  • Florea SM, Blatter LA (2008) The effect of oxidative stress on Ca(2+) release and capacitative Ca(2+) entry in vascular endothelial cells. Cell Calcium 43(4):405–415

    Article  CAS  PubMed  Google Scholar 

  • Forstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H (1994) Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23(6 Pt 2):1121–1131

    Article  CAS  PubMed  Google Scholar 

  • Gericke M, Droogmans G, Nilius B (1993) Thapsigargin discharges intracellular calcium stores and induces transmembrane currents in human endothelial cells. Pflugers Arch 422(6):552–557

    Article  CAS  PubMed  Google Scholar 

  • Girardin NC, Antigny F, Frieden M (2010) Electrophysiological characterization of store-operated and agonist-induced Ca2+ entry pathways in endothelial cells. Pflugers Arch 460(1):109–120

    Article  CAS  PubMed  Google Scholar 

  • Graier WF, Hoebel BG, Paltauf-Doburzynska J, Kostner GM (1998) Effects of superoxide anions on endothelial Ca2+ signaling pathways. Arterioscler Thromb Vasc Biol 18(9):1470–1479

    Article  CAS  PubMed  Google Scholar 

  • Groschner K, Hingel S, Lintschinger B, Balzer M, Romanin C, Zhu X, Schreibmayer W (1998) Trp proteins form store-operated cation channels in human vascular endothelial cells. FEBS Lett 437(1-2):101–106

    Article  CAS  PubMed  Google Scholar 

  • Gwack Y, Feske S, Srikanth S, Hogan PG, Rao A (2007) Signalling to transcription: store-operated Ca2+ entry and NFAT activation in lymphocytes. Cell Calcium 42(2):145–156

    Article  CAS  PubMed  Google Scholar 

  • Hadri L, Pavoine C, Lipskaia L, Yacoubi S, Lompre AM (2006) Transcription of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase type 3 gene, ATP2A3, is regulated by the calcineurin/NFAT pathway in endothelial cells. Biochem J 394(Pt 1):27–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison DG (2005) The shear stress of keeping arteries clear. Nat Med 11(4):375–376

    Article  CAS  PubMed  Google Scholar 

  • Himmel HM, Whorton AR, Strauss HC (1993) Intracellular calcium, currents, and stimulus-response coupling in endothelial cells. Hypertension 21(1):112–127

    Article  CAS  PubMed  Google Scholar 

  • Hofer E, Schweighofer B (2007) Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis. Thromb Haemost 97(3):355–363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hogan PG, Rao A (2015) Store-operated calcium entry: mechanisms and modulation. Biochem Biophys Res Commun 460(1):40–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holda JR, Blatter LA (1997) Capacitative calcium entry is inhibited in vascular endothelial cells by disruption of cytoskeletal microfilaments. FEBS Lett 403(2):191–196

    Article  CAS  PubMed  Google Scholar 

  • Holda JR, Klishin A, Sedova M, Huser J, Blatter LA (1998) Capacitative calcium entry. News Physiol Sci 13:157–163

    CAS  PubMed  Google Scholar 

  • Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355(6358):353–356

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Ziegelstein RC (2000) Hypoxia/reoxygenation stimulates intracellular calcium oscillations in human aortic endothelial cells. Circulation 102(20):2541–2547

    Article  CAS  PubMed  Google Scholar 

  • Huser J, Blatter LA (1997) Elementary events of agonist-induced Ca2+ release in vascular endothelial cells. Am J Physiol 273(5 Pt 1):C1775–C1782

    CAS  PubMed  Google Scholar 

  • Huser J, Holda JR, Kockskamper J, Blatter LA (1999) Focal agonist stimulation results in spatially restricted Ca2+ release and capacitative Ca2+ entry in bovine vascular endothelial cells. J Physiol 514(Pt 1):101–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84(24):9265–9269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jairaman A, Prakriya M (2013) Molecular pharmacology of store-operated CRAC channels. Channels (Austin) 7(5):402–414

    Article  CAS  Google Scholar 

  • Jara E, Hidalgo MA, Hancke JL, Hidalgo AI, Brauchi S, Nunez L, Villalobos C, Burgos RA (2014) Delphinidin activates NFAT and induces IL-2 production through SOCE in T cells. Cell Biochem Biophys 68(3):497–509

    Article  CAS  PubMed  Google Scholar 

  • Jardin I, Rosado JA (2016) STIM and calcium channel complexes in cancer. Biochim Biophys Acta 1863(6 Pt B):1418–1426

    Article  CAS  PubMed  Google Scholar 

  • Jousset H, Malli R, Girardin N, Graier WF, Demaurex N, Frieden M (2008) Evidence for a receptor-activated Ca2+ entry pathway independent from Ca2+ store depletion in endothelial cells. Cell Calcium 43(1):83–94

    Google Scholar 

  • Kar P, Samanta K, Kramer H, Morris O, Bakowski D, Parekh AB (2014) Dynamic assembly of a membrane signaling complex enables selective activation of NFAT by Orai1. Curr Biol 24(12):1361–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klishin A, Sedova M, Blatter LA (1998) Time-dependent modulation of capacitative Ca2+ entry signals by plasma membrane Ca2+ pump in endothelium. Am J Physiol 274(4 Pt 1):C1117–C1128

    CAS  PubMed  Google Scholar 

  • Kozai D, Ogawa N, Mori Y (2014) Redox regulation of transient receptor potential channels. Antioxid Redox Signal 21(6):971–986

    Article  CAS  PubMed  Google Scholar 

  • Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88(11):4651–4655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacruz RS, Feske S (2015) Diseases caused by mutations in ORAI1 and STIM1. Ann N Y Acad Sci 1356:45–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrie AM, Rizzuto R, Pozzan T, Simpson AW (1996) A role for calcium influx in the regulation of mitochondrial calcium in endothelial cells. J Biol Chem 271(18):10753–10759

    Article  CAS  PubMed  Google Scholar 

  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15(13):1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodola F, Laforenza U, Bonetti E, Lim D, Dragoni S, Bottino C, Ong HL, Guerra G, Ganini C, Massa M, Manzoni M, Ambudkar IS, Genazzani AA, Rosti V, Pedrazzoli P, Tanzi F, Moccia F, Porta C (2012) Store-operated Ca2+ entry is remodelled and controls in vitro angiogenesis in endothelial progenitor cells isolated from tumoral patients. PLoS One 7(9):e42541

    Google Scholar 

  • Lopez JJ, Albarran L, Gomez LJ, Smani T, Salido GM, Rosado JA (2016) Molecular modulators of store-operated calcium entry. Biochim Biophys Acta 1863(8):2037–2043

    Article  CAS  PubMed  Google Scholar 

  • Lounsbury KM, Hu Q, Ziegelstein RC (2000) Calcium signaling and oxidant stress in the vasculature. Free Radic Biol Med 28(9):1362–1369

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Cheng KT, Wong CO, O’Neil RG, Birnbaumer L, Ambudkar IS, Yao X (2011) Heteromeric TRPV4-C1 channels contribute to store-operated Ca(2+) entry in vascular endothelial cells. Cell Calcium 50(6):502–509

    Article  CAS  PubMed  Google Scholar 

  • Madge L, Marshall IC, Taylor CW (1997) Delayed autoregulation of the Ca2+ signals resulting from capacitative Ca2+ entry in bovine pulmonary artery endothelial cells. J Physiol 498(Pt 2):351–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malli R, Frieden M, Osibow K, Graier WF (2003a) Mitochondria efficiently buffer subplasmalemmal Ca2+ elevation during agonist stimulation. J Biol Chem 278(12):10807–10815

    Article  CAS  PubMed  Google Scholar 

  • Malli R, Frieden M, Osibow K, Zoratti C, Mayer M, Demaurex N, Graier WF (2003b) Sustained Ca2+ transfer across mitochondria is Essential for mitochondrial Ca2+ buffering, sore-operated Ca2+ entry, and Ca2+ store refilling. J Biol Chem 278(45):44769–44779

    Article  CAS  PubMed  Google Scholar 

  • Malli R, Frieden M, Hunkova M, Trenker M, Graier WF (2007) Ca2+ refilling of the endoplasmic reticulum is largely preserved albeit reduced Ca2+ entry in endothelial cells. Cell Calcium 41(1):63–76

    Article  CAS  PubMed  Google Scholar 

  • Michiels C, Arnould T, Houbion A, Remacle J (1992) Human umbilical vein endothelial cells submitted to hypoxia-reoxygenation in vitro: implication of free radicals, xanthine oxidase, and energy deficiency. J Cell Physiol 153(1):53–61

    Article  CAS  PubMed  Google Scholar 

  • Miller BA, Zhang W (2011) TRP channels as mediators of oxidative stress. Adv Exp Med Biol 704:531–544

    Article  CAS  PubMed  Google Scholar 

  • Minami T, Aird WC (2005) Endothelial cell gene regulation. Trends Cardiovasc Med 15(5):174–184

    Article  CAS  PubMed  Google Scholar 

  • Moccia F, Guerra G (2016) Ca(2+) signalling in endothelial progenitor cells: friend or foe? J Cell Physiol 231(2):314–327

    Article  CAS  PubMed  Google Scholar 

  • Moccia F, Poletto V (2015) May the remodeling of the Ca(2)(+) toolkit in endothelial progenitor cells derived from cancer patients suggest alternative targets for anti-angiogenic treatment? Biochim Biophys Acta 1853(9):1958–1973

    Article  CAS  PubMed  Google Scholar 

  • Moccia F, Tanzi F, Munaron L (2014) Endothelial remodelling and intracellular calcium machinery. Curr Mol Med 14(4):457–480

    Article  CAS  PubMed  Google Scholar 

  • Mumtaz S, Burdyga G, Borisova L, Wray S, Burdyga T (2010) The mechanism of agonist induced Ca(2+) signalling in intact endothelial cells studied confocally in in situ arteries. Cell Calcium 49(1):66–77

    Article  PubMed  CAS  Google Scholar 

  • Naghdi S, Waldeck-Weiermair M, Fertschai I, Poteser M, Graier WF, Malli R (2010) Mitochondrial Ca2+ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated Ca2+ entry. J Cell Sci 123(Pt 15):2553–2564

    Article  CAS  PubMed  Google Scholar 

  • Nakatsubo N, Kojima H, Kikuchi K, Nagoshi H, Hirata Y, Maeda D, Imai Y, Irimura T, Nagano T (1998) Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: diaminofluoresceins. FEBS Lett 427(2):263–266

    Article  CAS  PubMed  Google Scholar 

  • Nunes P, Demaurex N (2014) Redox regulation of store-operated Ca2+ entry. Antioxid Redox Signal 21(6):915–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327(6122):524–526

    Article  CAS  PubMed  Google Scholar 

  • Paltauf-Doburzynska J, Frieden M, Graier WF (1999) Mechanisms of Ca2+ store depletion in single endothelial cells in a Ca(2+)-free environment. Cell Calcium 25(5):345–353

    Article  CAS  PubMed  Google Scholar 

  • Parekh AB (2008) Mitochondrial regulation of store-operated CRAC channels. Cell Calcium 44(1):6–13

    Article  CAS  PubMed  Google Scholar 

  • Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77(4):901–930

    CAS  PubMed  Google Scholar 

  • Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85(2):757–810

    Article  CAS  PubMed  Google Scholar 

  • Parker I, Yao Y (1996) Ca2+ transients associated with openings of inositol trisphosphate-gated channels in Xenopus oocytes. J Physiol 491(Pt 3):663–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H, Zhu MX, Romanin C, Groschner K (2006) TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281(19):13588–13595

    Article  CAS  PubMed  Google Scholar 

  • Prakriya M (2013) Store-operated Orai channels structure and function. Curr Top Membr 71:1–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakriya M, Lewis RS (2015) Store-operated calcium channels. Physiol Rev 95(4):1383–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443(7108):230–233

    Article  CAS  PubMed  Google Scholar 

  • Prevarskaya N, Skryma R, Shuba Y (2011) Calcium in tumour metastasis: new roles for known actors. Nat Rev Cancer 11(8):609–618

    Article  CAS  PubMed  Google Scholar 

  • Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Putney JW Jr (1997) Capacitative calcium entry. R. G. Landes, Georgetown, TX

    Book  Google Scholar 

  • Putney JW Jr (2009) Capacitative calcium entry: from concept to molecules. Immunol Rev 231(1):10–22

    Article  CAS  PubMed  Google Scholar 

  • Putney JW Jr (2013) Alternative forms of the store-operated calcium entry mediators, STIM1 and Orai1. Curr Top Membr 71:109–123

    Article  CAS  PubMed  Google Scholar 

  • Radomski MW, Palmer RM, Moncada S (1987) The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 92(3):639–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randriamampita C, Tsien RY (1993) Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature 364(6440):809–814

    Article  CAS  PubMed  Google Scholar 

  • Redondo PC, Rosado JA (2015) Store-operated calcium entry: unveiling the calcium handling signalplex. Int Rev Cell Mol Biol 316:183–226

    Article  PubMed  Google Scholar 

  • Ribeiro CM, Reece J, Putney JW Jr (1997) Role of the cytoskeleton in calcium signaling in NIH 3T3 cells. An intact cytoskeleton is required for agonist-induced [Ca2+]i signaling, but not for capacitative calcium entry. J Biol Chem 272(42):26555–26561

    Article  CAS  PubMed  Google Scholar 

  • Rinne A, Blatter LA (2010) A fluorescence-based assay to monitor transcriptional activity of NFAT in living cells. J Physiol 588(Pt 17):3211–3216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinne A, Banach K, Blatter LA (2009) Regulation of nuclear factor of activated T cells (NFAT) in vascular endothelial cells. J Mol Cell Cardiol 47(3):400–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Hernandez Y, Laforenza U, Bonetti E, Fontana J, Dragoni S, Russo M, Avelino-Cruz JE, Schinelli S, Testa D, Guerra G, Rosti V, Tanzi F, Moccia F (2010) Store-operated Ca(2+) entry is expressed in human endothelial progenitor cells. Stem Cells Dev 19(12):1967–1981

    Article  CAS  PubMed  Google Scholar 

  • Schilling WP, Elliott SJ (1992) Ca2+ signaling mechanisms of vascular endothelial cells and their role in oxidant-induced endothelial cell dysfunction. Am J Physiol 262(6 Pt 2):H1617–H1630

    CAS  PubMed  Google Scholar 

  • Schilling WP, Cabello OA, Rajan L (1992) Depletion of the inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ store in vascular endothelial cells activates the agonist-sensitive Ca(2+)-influx pathway. Biochem J 284(Pt 2):521–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedova M, Blatter LA (1999) Dynamic regulation of [Ca2+]i by plasma membrane Ca(2+)-ATPase and Na+/Ca2+ exchange during capacitative Ca2+ entry in bovine vascular endothelial cells. Cell Calcium 25(5):333–343

    Article  CAS  PubMed  Google Scholar 

  • Sedova M, Blatter LA (2000) Intracellular sodium modulates mitochondrial calcium signaling in vascular endothelial cells. J Biol Chem 275(45):35402–35407

    Article  CAS  PubMed  Google Scholar 

  • Sedova M, Klishin A, Huser J, Blatter LA (2000) Capacitative Ca2+ entry is graded with degree of intracellular Ca2+ store depletion in bovine vascular endothelial cells. J Physiol 523(Pt 3):549–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth JT, Hwang SY, Tomita T, DeHaven WI, Mercer JC, Putney JW (2010) Activation and regulation of store-operated calcium entry. J Cell Mol Med 14(10):2337–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi K, Watanabe H, Tran QK, Ozeki M, Sumi D, Hayashi T, Iguchi A, Ignarro LJ, Ohashi K, Hayashi H (2004) Nitric oxide: inhibitory effects on endothelial cell calcium signaling, prostaglandin I2 production and nitric oxide synthase expression. Cardiovasc Res 62(1):194–201

    Article  CAS  PubMed  Google Scholar 

  • Tiruppathi C, Minshall RD, Paria BC, Vogel SM, Malik AB (2002) Role of Ca2+ signaling in the regulation of endothelial permeability. Vasc Pharmacol 39(4–5):173–185

    Article  CAS  Google Scholar 

  • Vaca L, Kunze DL (1994) Depletion of intracellular Ca2+ stores activates a Ca(2+)-selective channel in vascular endothelium. Am J Physiol 267(4 Pt 1):C920–C925

    CAS  PubMed  Google Scholar 

  • Varnai P, Hunyady L, Balla T (2009) STIM and Orai: the long-awaited constituents of store-operated calcium entry. Trends Pharmacol Sci 30(3):118–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312(5777):1220–1223

    Article  CAS  PubMed  Google Scholar 

  • Wang LY, Zhang JH, Yu J, Yang J, Deng MY, Kang HL, Huang L (2015) Reduction of store-operated Ca(2+) entry correlates with endothelial progenitor cell dysfunction in atherosclerotic mice. Stem Cells Dev 24(13):1582–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward PA (1991) Mechanisms of endothelial cell injury. J Lab Clin Med 118(5):421–426

    CAS  PubMed  Google Scholar 

  • Xie J, Pan H, Yao J, Zhou Y, Han W (2016) SOCE and cancer: recent progress and new perspectives. Int J Cancer 138(9):2067–2077

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Huang Y (2003) From nitric oxide to endothelial cytosolic Ca2+: a negative feedback control. Trends Pharmacol Sci 24(6):263–266

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Choi J, Parker I (1995) Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes. J Physiol 482(Pt 3):533–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2(11):596–607

    Article  CAS  PubMed  Google Scholar 

  • Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci USA 103(24):9357–9362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuccolo E, Bottino C, Diofano F, Poletto V, Codazzi AC, Mannarino S, Campanelli R, Fois G, Marseglia GL, Guerra G, Montagna D, Laforenza U, Rosti V, Massa M, Moccia F (2016) Constitutive store-operated Ca(2+) entry leads to enhanced nitric oxide production and proliferation in infantile hemangioma-derived endothelial colony-forming cells. Stem Cells Dev 25(4):301–319

    Article  CAS  PubMed  Google Scholar 

  • Zulueta JJ, Sawhney R, Yu FS, Cote CC, Hassoun PM (1997) Intracellular generation of reactive oxygen species in endothelial cells exposed to anoxia-reoxygenation. Am J Physiol 272(5 Pt 1):L897–L902

    CAS  PubMed  Google Scholar 

  • Zweier JL, Broderick R, Kuppusamy P, Thompson-Gorman S, Lutty GA (1994) Determination of the mechanism of free radical generation in human aortic endothelial cells exposed to anoxia and reoxygenation. J Biol Chem 269(39):24156–24162

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar A. Blatter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Blatter, L.A. (2017). Tissue Specificity: SOCE: Implications for Ca2+ Handling in Endothelial Cells. In: Groschner, K., Graier, W., Romanin, C. (eds) Store-Operated Ca²⁺ Entry (SOCE) Pathways. Advances in Experimental Medicine and Biology, vol 993. Springer, Cham. https://doi.org/10.1007/978-3-319-57732-6_18

Download citation

Publish with us

Policies and ethics