Skip to main content

Abstract

In the last years, innovations in technology and methodology, as well as increased knowledge about cortical oscillations , have significantly impacted the advancement of new neurofeedback approaches. As such, sham-controlled studies , showing evidence for enhanced performance of cognition after self-regulation of brain activity, have been published. Effects have been demonstrated regarding working memory (Hsueh et al. in Hum Brain Mapp 37(7):2662–2675, 2016), executive functions (Enriquez-Geppert et al. in Front Behav Neurosci 5(8):420, 2014), binding processes (Keizer et al. in NeuroImage 49(4):3404–3413, 2010a; Int J Psychophysiol 75(19):25–32, 2010b), and memory (Guez et al. in Memory 23(5):683–694, 2014), as well as real-life performance (Ros et al. in BMC Neurosci 10:87, 2009). In this chapter, we first present the rationale behind neurofeedback based on electroencephalography (EEG) and then list examples of recent studies demonstrating effects on cognition and everyday life performance. Subsequentially, the conceptualization of the self-regulation of brain activity, as well as neuroplastic effects evoked by neurofeedback follow. As a next step, issues regarding the specificity and efficacy of neurofeedback are discussed. Finally, we conclude with a summary and an outlook of EEG neurofeedback approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adamchic, I., Toth, T., Hauptmann, C., & Tass, P. A. (2014). Reversing pathologically increased EEG power by acoustic coordinated reset neuromodulation. Human Brain Mapping, 35(5), 2099–2118. doi:10.1002/hbm.22314

    Article  PubMed  Google Scholar 

  • Allison, B., & Neuper, C. (2010). Could anyone use a BCI? In D. Tan & A. Nijholt (Eds.), Brain–Computer Interfaces: Human–Computer Interaction Series (pp. 35–54). London: Springer. doi:10.1007/978-1-84996-272-8_3

  • Arns, M., Kleinnijenhuis, M., Fallahpour, K., & Breteler, R. (2008). Golf performance enhancement and real-life neurofeedback training using personalized event-locked EEG profiles. Journal of Neurotherapy, 11(4), 11–18. doi:10.1080/10874200802149656

    Article  Google Scholar 

  • Babiloni, C., Del Percio, C., Iacoboni, M., Infarinato, F., Lizio, R., Marzano, N., et al. (2008). Golf putt outcomes are predicted by sensorimotor cerebral EEG rhythms. Journal of Physiology, 586, 131–139. doi:10.1113/jphysiol.2007.141630

    Article  PubMed  Google Scholar 

  • Başar, E., & Güntekin, B. (2008). A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Research, 1235, 172–193. doi:10.1016/j.brainres.2008.06.103

    Article  PubMed  Google Scholar 

  • Bazanova, O. M., & Aftanas, L. I. (2008). Individual measures of electroencephalogram alpha activity and non-verbal creativity. Neuroscience and Behavioral Physiology, 38(3), 227–235. doi:10.1007/s11055-008-0034-y

    Article  PubMed  Google Scholar 

  • Berger, H. (1929). Über das Elektroenzephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten, 1929(87), 527–557.

    Article  Google Scholar 

  • Birbaumer, N., Ruiz, S., & Sitaram, R. (2013). Learned regulation of brain metabolism. Trends in Cognitive Sciences, 17(6), 295–302. doi:10.1016/j.tics.2013.04.009

    Article  PubMed  Google Scholar 

  • Buzsáki, G., Logothetis, N., & Singer, W. (2013). Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron, 80(3), 751–764. doi:10.1016/j.neuron.2013.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Cannon, R., Congedo, M., Lubar, J., & Hutchens, T. (2009). Differentiating a network of executive attention: LORETA neurofeedback in anterior cingulate and dorsolateral prefrontal cortices. International Journal of Neuroscience, 119, 404–441.

    Article  PubMed  Google Scholar 

  • Cannon, R., Lubar, J., Congedo, M., Thornton, K., Towler, K., & Hutchens, T. (2007). The effects of neurofeedback training in the cognitive division of the cingulate gyrus. International Journal of Neuroscience, 117, 337–357.

    Article  PubMed  Google Scholar 

  • Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Science, 18(8), 414–421. doi:10.1016/j.tics.2014.04.012

    Article  Google Scholar 

  • Cavanagh, J. F., Zambrano-Vazquez, L., & Allen, J. B. (2012). Theta lingua franca: A common mid-frontal substrate for action monitoring processes. Psychophysiology, 49(2), 220–238. doi:10.1111/j.1469-8986.2011.01293.x

    Article  PubMed  Google Scholar 

  • Cheng, M.-Y., Huang, C.-J., Chang, Y.-K., Koester, D., Schack, T., & Hung, T.-M. (2015). Sensorimotor rhythm neurofeedback enhances golf putting performance. Journal of Sport & Exercice Psychology, 37(6), 626–636. doi:10.1123/jsep.2015-0166

    Article  Google Scholar 

  • Cho, M. K., Jang, H. S., Jeong, S. H., Jang, I. S., Choi, B. J., & Lee, M. G. (2008). Alpha neurofeedback improves the maintaining ability of alpha activity. NeuroReport, 19(3), 315–317. doi:10.1097/WNR.0b013e3282f4f022

    Article  PubMed  Google Scholar 

  • Cohen, M. X., & Donner, T. H. (2013). Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. Journal of Neurophysiology, 110(12), 2752–2763. doi:10.1152/jn.00479.2013

    Article  PubMed  Google Scholar 

  • Congedo, M., Lubar, J. F., & Joffe, D. (2004). Low resolution electromagnetic tomography neurofeedback. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12, 387–397.

    Article  PubMed  Google Scholar 

  • Cooke, A., Kavussanu, M., Gallicchio, G., Willoughby, A., McIntyre, D., & Ring, C. (2014). Preparation for action: Psychophysiological activity preceding a motor skill as a function of expertise, performance outcome, and psychological pressure. Psychophysiology, 51(4), 374–384. doi:10.1111/psyp.1218

    Article  PubMed  PubMed Central  Google Scholar 

  • Donkers, F. C. L., Schwikert, S. R., Evans, A. M., Cleary, K. M., Perkins, D. O., & Belger, A. (2011). Impaired neural synchrony in the theta frequency range in adolescents at familial risk for schizophrenia. Frontiers in Psychiatry, 22(2), 55. doi:10.3389/fpsyt.2011.00051

    Article  Google Scholar 

  • Egner, T., & Gruzelier, J. H. (2004). Ecological validity of neurofeedback: Modulation of slow wave EEG enhances musical performance. NeuroReport, 14(9), 1221–1224.

    Article  Google Scholar 

  • Emmert, K., Kopel, R., Sulzer, J., Brühl, A. B., Berman, B. D., Linden, D. E., …Johnston, S. (2016). Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated? NeuroImage 124, 806–812. doi:10.1016/j.neuroimage.2015.09.042

  • Engel, A. K., & Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends in Cognitive Science, 5(1), 16–25.

    Article  Google Scholar 

  • Engelbregt, H. J., Keeser, D., van Eijk, L., Suiker, E. M., Eichhorn, D., Karch, S., et al. (2016). Short and long-term effects of sham-controlled prefrontal EEG-neurofeedback training in healthy subjects. Clinical Neurophysiology, 172(4), 1931–1937. doi:10.1016/j.clinph.2016.01.004

    Article  Google Scholar 

  • Enriquez-Geppert, S., Huster, R. J., Figge, C., & Herrmann, C. S. (2013). Modulation of frontal-midline theta by neurofeedback. Biological Psychology, 95, 59–69. doi:10.1016/j.biopsycho.2013.02.019

    Article  PubMed  Google Scholar 

  • Enriquez-Geppert, S., Huster, R. J., Figge, C., & Herrmann, C. S. (2014). Self-regulation of frontal-midline theta facilitates memory updating and mental set shifting. Frontiers in Behavioral Neuroscience, 5(8), 420. doi:10.3389/fnbeh.2014.00420

    Article  Google Scholar 

  • Escolano, C., Aquilar, M., & Minguey, J. (2011). EEG-based upper alpha neurofeedback training improves working memory performance. In Conference Proceedings IEEE Engineering in Medicine and Biology Society (pp. 2327–2330). doi:10.1109/IEMBS.2011.6090651

  • Fauth, M., & Tetzlaff, C. (2016). Opposing effects of neuronal activity on structural plasticity. Frontiers in Neuroanatomy, 10, 75. doi:10.3389/fnana.2016.00075

    Article  PubMed  PubMed Central  Google Scholar 

  • Fender, D. H. (1987). Source localization of brain electrical activity. In A. S. Gevins & A. Remond (Eds.), Handbook of electroencephalography and clinical neurophysiology (Vol. 1, pp. 355–399). Methods of analysis of brain electrical and magnetic signals. Amsterdam: Elsevier.

    Google Scholar 

  • Fink, A., & Neubauer, A. C. (2006). EEG alpha oscillations during the performance of verbal creativity tasks: Differential effects of sex and verbal intelligence. International Journal of Psychophysiology, 62(1), 46–53.

    Article  PubMed  Google Scholar 

  • Ghaziri, J., Tucholka, A., Larue, V., Blanchette-Sylvetre, M., Reyburn, G., Gilbert, G., et al. (2013). Neurofeedback training induces changes in white and gray matter. Clinical EEG and Neuroscience, 44(4), 265–272. doi:10.1177/1550059413476031

    Article  PubMed  Google Scholar 

  • Grabner, R. H., Fink, A., & Neubauer, A. C. (2007). Brain correlates of self-rated originality of ideas: Evidence from event-related power and phase-locking changes in the EEG. Behavioral Neuroscience, 121(1), 224–230.

    Article  PubMed  Google Scholar 

  • Gruzelier, J. H. (2014a). EEG-neurofeedback for optimising performance. I. A review of cognitive and affective outcome in healthy participants. Neuroscience and Biobehavioral Review, 44, 124–141. doi:10.1016/j.neubiorev.2013.09.015

    Article  Google Scholar 

  • Gruzelier, J. H. (2014b). EEG-neurofeedback for optimising performance. II. Creativity, the performing arts and ecological validity. Neuroscience and Biobehavioral Review, 44, 142–158.

    Article  Google Scholar 

  • Gruzelier, J. H. (2014c). EEG-neurofeedback for optimising performance. III: A review of methodological and theoretical considerations. Neuroscience and Biobehavioral Review, 44, 159–182.

    Article  Google Scholar 

  • Gruzelier, J. H., Hirst, L., Holmes, P., & Leach, J. (2014a). Immediate effects of alpha-theta and sensory/motor rhythm feedback on music performance. International Journal of Psychophysiology, 93(1), 96–106. doi:10.1016/j.ijpsycho.2014.03.009

    Article  PubMed  Google Scholar 

  • Gruzelier, J. H., Thompson, T., Redding, E., Brandt, R., & Steffert, R. (2014b). Application of Alpha-theta neurofeedback and heart rate variability training to young contemporary dancers: State anxiety and creativity. International Journal of Psychophysiology, 93(1), 105–111. doi:10.1016/j.neubiorev.2013.11.004

    Article  PubMed  Google Scholar 

  • Guez, J., Rogel, A., Getter, N., Keha, E., Cohen, T., Amor, T., et al. (2014). Influence of electroencephalography neurofeedback training on episodic memory: A randomized, sham-controlled, double-blind study. Memory, 23(5), 683–694. doi:10.1080/09658211.2014.921713

    Article  PubMed  Google Scholar 

  • Hanslmayr, S., Sauseng, P., Doppelmayr, M., Schabus, M., & Klimesch, W. (2005). Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Applied Psychophysiology and Biofeedback., 30(1), 1–10.

    Article  PubMed  Google Scholar 

  • Hardman, E., Gruzelier, J., Cheesman, K., Jones, C., Liddiard, D., Schleichert, H., et al. (1997). Frontal interhemispheric asymmetry: Self-regulation and individual differences in humans. Neuroscience Letters, 221(2), 117–120. doi:10.1016/S0304-3940(96)13303-6

    Article  PubMed  Google Scholar 

  • Herrmann, C. S., & Knight, R. T. (2001). Mechanisms of human attention: Event-related potentials and oscillations. Neuroscience and Biobehavioral Review, 25(6), 465–476. doi:10.1016/S0149-7634(01)00027-6

    Article  Google Scholar 

  • Hoedlmoser, K., Pecherstorfer, T., Gruber, G., Anderer, P., Doppelmayr, M., Klimesch, W., et al. (2008). Instrumental conditioning of human sensorimotor rhythms (12–15 Hz) and its impact on sleep as well as declarative learning. Sleep, 31(19), 1401–1408. doi:10.1016/j.ijpsycho.2012.07.182

    Article  PubMed  PubMed Central  Google Scholar 

  • Horschig, J. M., Jensen, O., van Schouwenburg, M. R., Cools, R., & Bonnefond, M. (2014). Alpha activity reflects individual abilities to adapt to the environment. NeuroImage, 89, 235–243. doi:10.1016/j.neuroimage.2013.12.018

    Article  PubMed  Google Scholar 

  • Hsueh, J.-J., Chen, T.-S., Chen, J.-J., & Shaw, F.-Z. (2016). Neurofeedback training of EEG alpha rhythm enhances episodic and working memory. Human Brain Mapping, 37(7), 2662–2675.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hulme, S. R., Jones, O. D., & Abraham, W. C. (2013). Emerging roles of metaplasticity in behaviour and disease. Trends in Neurosciences, 36(6), 353–362. doi:10.1016/j.tins.2013.03.007

    Article  PubMed  Google Scholar 

  • Huster, R. J., Mokom, Z. N., Enriquez-Geppert, S., & Herrmann, C. S. (2014). Brain–computer interfaces for EEG neurofeedback: Peculiarities and solutions. International Journal Psychophysiology., 91(1), 36–45. doi:10.1016/j.ijpsycho.2013.08.011

    Article  Google Scholar 

  • Ishihara, T., Hayashi, H., & Hishikawa, Y. (1981). Distribution of frontal midline theta rhythm (Fm0) on the scalp in different states (mental calculation, resting and drowsiness). Electroencephalography and Clinical Neurophysiology, 52(3), 19. doi:10.1016/0013-4694(81)92408-1

    Article  Google Scholar 

  • Janssen, T. W., Bink, M., Gelade, K., van Mourik, R., Maras, A., & Oosterlaan, J. (2016). A randomized controlled trial into the effects of neurofeedback, methylphenidate, and physical activity on EEG power spectra in children with ADHD. Journal of Child Psychology and Psychiatry, 57(5), 633–644. doi:10.1111/jcpp.12517

    Article  PubMed  Google Scholar 

  • Kamiya, J. (2011). The first communications about operant conditioning of the EEG. Journal of Neurotherapy, 15(1), 65–73.

    Article  Google Scholar 

  • Keizer, A. W., Verment, R. S., & Hommel, B. (2010a). Enhancing cognitive control through neurofeedback: A role of gamma-band activity in managing episodic retrieval. NeuroImage, 49(4), 3404–3413. doi:10.1016/j.neuroimage.2009.11.023

    Article  PubMed  Google Scholar 

  • Keizer, A., Verschoor, M., Verment, R. S., & Hommel, B. (2010b). The effect of gamma enhancing neurofeedback on the control of feature bindings and intelligence measures. International Journal Psychophysiology., 75(19), 25–32. doi:10.1016/j.ijpsycho.2009.10.011

    Article  Google Scholar 

  • Kikkert, A. (2015). Predictors of neurofeedback efficacy: An exploratory study to the influence of personality and cognitive characteristics on the efficacy of theta and beta neurofeedback training. Dissertation, University of Leiden.

    Google Scholar 

  • Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Review, 29(2–3), 169–195. doi:10.1016/S0165-0173(98)00056-3

    Article  Google Scholar 

  • Kluetsch, R. C., Ros, R., Theberge, J., Frewen, P. A., Calhoun, V. D., Schmach, C., et al. (2014). Plastic modulation of PTSD resting-state networks and subjective wellbeing by EEG neurofeedback. Acta Psychiatrica Scandinavica, 130(2), 123–136. doi:10.1111/acps.12229

    Article  PubMed  Google Scholar 

  • Knoblauch, A., Hauser, F., Gewaltig, M.-O., Körner, E., & Palm, G. (2012). Does spike-timing-dependent synaptic plasticity couple or decouple neurons firing in synchrony? Frontiers in Computational Neuroscience, 6, 55. doi:10.3389/fncom.2012.00055

    Article  PubMed  PubMed Central  Google Scholar 

  • Kober, S. E., Schweiger, D., Witte, M., Reichert, J. L., Grieshofer, P., Neuper, C., et al. (2015a). Specific effects of EEG based neurofeedback training on memory functions in post-stroke victims. Journal Neuroengineering and Rehabilitation, 12(1), 1. doi:10.1186/s12984-015-0105-6

    Article  Google Scholar 

  • Kober, S. E., Witte, M., Ninaus, M., Koschutnig, K., Neuper, C., & Wood, G. (2015b). Spirituality and the ability to gain control over one’s own brain activity: A multimodal imaging study. Geneva: Organization for Human Brain Mapping.

    Google Scholar 

  • Kober, S. E., Witte, M., Ninaus, M., Neuper, C., & Wood, G. (2013). Learning to modulate one’s own brain activity: The effect of spontaneous mental strategies. Frontiers in Human Neuroscience, 7, 695. doi:10.3389/fnhum.2013.00695

    Article  PubMed  PubMed Central  Google Scholar 

  • Kober, S. E., Witte, M., Stangl, M., Väljamäe, A., Neuper, C., & Wood, G. (2015c). Shutting down sensorimotor interference unblocks the networks for stimulus processing: An SMR neurofeedback training study. Clinical Neurophysiology, 126(1), 82–95. doi:10.1016/j.clinph.2014.03.031

    Article  PubMed  Google Scholar 

  • Legenstein, R., Pecevski, D., & Maass, W. (2008). A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS Computational Biology, 4(10), e1000180. doi:10.1371/journal.pcbi.1000180

    Article  PubMed  PubMed Central  Google Scholar 

  • Lévesque, J., Beauregard, M., & Mensour, B. (2006). Effect of neurofeedback training on the neural substrates of selective attention in children with attention-deficit/hyperactivity disorder: A functional magnetic resonance imaging study. Neuroscience Letters, 394(3), 216–221.

    Article  PubMed  Google Scholar 

  • Lubar, J. F., & Swartwood, M. (1995). Quantitative EEG and auditory event-related potentials in the evaluation of attention-deficit/hyperactivity disorder: Effects of methylphenidate and implications for neurofeedback training. Journal of Psychoeducational Assessment, 1938, 143–160.

    Google Scholar 

  • Maurizio, S., Liechti, M. D., Heinrich, H., Jäncke, L., Steinhausen, H. C., Walitza, S., et al. (2014). Comparing tomographic EEG neurofeedback and EMG biofeedback in children with attention-deficit/hyperactivity disorder. Biological Psychology, 95, 31–44.

    Article  PubMed  Google Scholar 

  • Mitchell, D. J., McNaughton, N., Flanagan, D., & Kirk, I. J. (2008). Frontal-midline theta from the perspective of hippocampal “theta”. Progress in Neurobiology, 86(3), 156–185. doi:10.1016/j.pneurobio.2008.09.005

    Article  PubMed  Google Scholar 

  • Monastra, V. J., Monastra, D. M., & George, S. (2002). The effects of stimulant therapy, EEG biofeedback, and parenting style on the primary symptoms of attention-deficit/hyperactivity disorder. Applied Psychophysiology and Biofeedback, 27(4), 231–249.

    Article  PubMed  Google Scholar 

  • Musall, S., Von Pföstl, V., Rauch, A., Logothetis, N. K., & Whittingstall, K. (2014). Effects of neural synchrony on surface EEG. Cerebral Cortex, 24(4), 1045–1053. doi:10.1093/cercor/bhs389

    Article  PubMed  Google Scholar 

  • Nan, W., Rodrigues, J. R., Ma, J., Qu, X., Wan, F., Mak, R.-I., et al. (2012). Individual alpha neurofeedback training effect on short term memory. International Journal Psychophysiology, 86(1), 83–87. doi:10.1016/j.ijpsycho.2012.07.182

    Article  Google Scholar 

  • Niendam, T. A., Lair, A. R., Kimberly, L. R., Dean, Y. M., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive Affective and Behavioral Neuroscience, 12(2), 241–268. doi:10.3758/s13415-011-0083-5

    Article  Google Scholar 

  • Ninaus, M., Kober, S. E., Witte, M., Koschutnig, K., Neuper, C., & Wood, G. (2015). Brain volumetry and self-regulation of brain activity relevant for neurofeedback. Biological Psychology, 110, 126–133. doi:10.1016/j.biopsycho.2015.07.009

    Article  PubMed  Google Scholar 

  • Ninaus, M., Kober, S. E., Witte, M., Koschutnig, K., Stangl, M., Neuper, C., et al. (2013). Neural substrates of cognitive control under the belief of getting neurofeedback training. Frontiers in Human Neuroscience, 7, 914. doi:10.3389/fnhum.2013.00914

    Article  PubMed  PubMed Central  Google Scholar 

  • Okazaki, Y. O., Horschig, J. M., Luther, L., Oostenveld, R., Murakami, I., & Jensen, O. (2015). Real-time MEG neurofeedback training of posterior alpha activity modulates subsequent visual detection performance. NeuroImage, 107, 323–332. doi:10.1016/j.neuroimage.2014.12.014

    Article  PubMed  Google Scholar 

  • Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low-resolution electromagnetic tomography—a new method for localizing electrical-activity in the brain. International Journal Psychophysiology, 18(1), 49–65. doi:10.1016/0167-8760(84)90014-X

    Article  Google Scholar 

  • Pfister, J.-P., & Tass, P. A. (2010). STDP in oscillatory recurrent networks: Theoretical conditions for desynchronization and applications to deep brain stimulation. Frontiers in Computational Neuroscience, 4(July), 1–10. doi:10.3389/fncom.2010.00022

    Article  Google Scholar 

  • Raymond, J., Sajid, I., Parkinson, L. A., & Gruzelier, J. H. (2005). Biofeedback and dance performance: A preliminary investigation. Applied Psychophysiology and Biofeedback, 30(1), 64–73.

    Article  PubMed  Google Scholar 

  • Regestein, Q. R., Pegram, G. V., Cook, B., & Bradley, D. (1973). Alpha rhythm percentage maintained during 4- and 12-hour feedback periods. Psychosomatic Medicine, 35(3), 215–222.

    Article  PubMed  Google Scholar 

  • Reichert, J. L., Kober, S. E., Neuper, C., & Wood, G. (2016a). Resting-state sensorimotor rhythm (SMR) power predicts the ability to up-regulate SMR in an EEG-instrumental conditioning paradigm. Clinical Neurophysiology, 126(11), 2068–2077. doi:10.1016/j.clinph.2014.09.032

    Article  Google Scholar 

  • Reichert, J. L., Kober, S. E., Schweiger, D., Grieshofer, P., Neuper, C., & Wood, G. (2016b). Shutting down sensorimotor interferences after stroke: A proof-of-principle SMR neurofeedback study. Frontiers in Human Neuroscience. doi:10.3389/fnhum.2016.00348

    Article  PubMed  PubMed Central  Google Scholar 

  • Reichert, J. L., Kober, S. E., Witte, M., Neuper, C., & Wood, G. (2016c). Age-related effects on verbal and visuospatial memory are mediated by theta and alpha II rhythms. International Journal Psychophysiology., 99, 67–78.

    Article  Google Scholar 

  • Rice, J. K., Rorden, C., Little, J. S., & Parra, L. C. (2013). Subject position affects EEG magnitudes. NeuroImage, 64, 476–484.

    Article  PubMed  Google Scholar 

  • Rihs, T. A., Michel, C. M., & Thut, G. (2007). Mechanisms of selective inhibition in visual spatial attention are indexed by alpha-band EEG synchronization. European Journal of Neuroscience, 25(2), 603–610.

    Article  PubMed  Google Scholar 

  • Ring, C., Cooke, A., Kavussnu, M., McIntyre, D., & Masters, R. (2015). Investigating the efficacy of neurofeedback training for expediting expertise and excellence in sport. Psychology of Sport and Exercise, 16(1), 118–127. doi:10.1016/j.psychsport.2014.08.005

    Article  Google Scholar 

  • Rogala, J., Ruewicz, J., Paluch, K., Kublik, E., Cetnarski, R., & Wrobel, A. (2016). The do’s and don’ts of neurofeedback training: A review of the controlled studies using healthy adults. Frontiers in Human Neuroscience. doi:10.3389/fnhum.2016.00301 (eCollection 2016).

  • Ros, T. J., Baars, B., Lanius, R. A., & Vuilleumier, P. (2014). Tuning pathological brain oscillations with neurofeedback: A systems neuroscience framework. Frontiers in Human Neuroscience, 8, 1008. doi:10.1016/j.ijpsycho.2015.11.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Ros, T., Frewen, P., Theberge, J., Michela, A., Kluetsch, R., Mueller, M., et al. (2016). Neurofeedback tunes scale-free dynamics in spontaneous brain activity. Cerebral Cortex. doi:10.1093/cercor/bhw285

    Article  Google Scholar 

  • Ros, T., Moseley, M. R., Bloom, P. A., Benjamin, L., Parkinson, L. A., & Gruzelier, J. H. (2009). Optimizing microsurgical skills with EEG neurofeedback. BMC Neuroscience, 10, 87. doi:10.1186/1471-2202-10-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Ros, T., Munneke, M., Ruge, D., Gruzelier, J., & Rothwell, J. (2010). Endogenous control of waking brain rhythms induces neuroplasticity in humans. European Journal of Neuroscience, 31(4), 770–778. doi:10.1111/j.1460-9568.2010.07100.x

    Article  PubMed  Google Scholar 

  • Ros, T., Theberge, J., Frewen, P. A., Gluetsch, R., Densmore, M., Calhoun, V. D., et al. (2013). Mind over chatter: Plastic up-regulation of the fMRI salience network directly after EEG neurofeedback. NeuroImage, 65, 324–335. doi:10.1016/j.neuroimage.2012.09.046

    Article  PubMed  Google Scholar 

  • Salari, N., Buchel, C., & Rose, M. (2013). Functional dissociation of ongoing oscillatory brain states. PLoS ONE, 7, e38090.

    Article  Google Scholar 

  • Sauseng, P., & Klimesch, W. (2008). What does phase information of oscillatory brain activity tell us about cognitive processes? Neuroscience and Biobehavioral Review, 32(5), 1001–1013.

    Article  Google Scholar 

  • Schabus, M., Heib, D. P. J., Lechinger, J., Griessenberger, H., Klimesch, W., Pawlizki, A., et al. (2014). Enhancing sleep quality and memory in insomnia using instrumental sensorimotor rhythm conditioning. Biological Psychology, 95, 126–134.

    Article  PubMed  Google Scholar 

  • Schachter, D. L. (1976). The hypnagogic state: A critical review of the literature. Psychological Bulletin, 83(3), 452–481.

    Article  Google Scholar 

  • Schulz, P. E., & Fitzgibbons, J. C. (1997). Differing mechanisms of expression for short- and long-term potentiation. Journal of Neurophysiology, 78(1), 321–334.

    Article  PubMed  Google Scholar 

  • Sederberg, P. B., Kahana, M. J., Howard, M. W., Donner, E. J., & Madsen, J. R. (2003). Theta and gamma oscillations during encoding predict subsequent recall. Journal of Neuroscience, 23(34), 10809–10814.

    Article  PubMed  Google Scholar 

  • Sittenfeld, P., Budzynski, T., & Stoyva, J. (1976). Differential shaping of EEG theta rhythms. Biofeedback and Self Regulation, 1(1), 31–46.

    Article  PubMed  Google Scholar 

  • Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nature Neuroscience, 17(5), 652–660.

    Article  PubMed  Google Scholar 

  • Staufenbiel, S. M., Brouwer, A. M., Keizer, A. W., & van Wouwe, N. C. (2014). Effect of beta and gamma neurofeedback on memory and intelligence in the elderly. Biological Psychology, 95, 74–85. doi:10.1016/j.biopsycho.2013.05.020

    Article  PubMed  Google Scholar 

  • Steriade, M. (1999). Coherent oscillations and short-term plasticity in corticothalamic networks. Trends in Neuroscience, 22(8), 337–345.

    Article  Google Scholar 

  • Sterman, M. B., Howe, R. C., & MacDonald, L. R. (1970). Facilitation of spindle burst sleep by conditioning of electroencephalographic activity while awake. Science, 167, 1146–1148.

    Article  PubMed  Google Scholar 

  • Sterman, M. B., Wyrwicka, W., & Howe, R. (1969). Behavioral and neurophysiological studies of the sensorimotor rhythm in the cat. Electroencephalogramm and Clinical Neurophysiology, 27, 678–679.

    Article  Google Scholar 

  • Tallon-Baudry, C., & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Science., 3(4), 151–162.

    Article  Google Scholar 

  • Tass, P. A., Silchenko, A. N., Hauptmann, C., Barnikol, U. B., & Speckmann, E. J. (2009). Long-lasting desynchronization in rat hippocampal slice induced by coordinated reset stimulation. Physical Review E, 80(1 Pt 1), 011902.

    Article  Google Scholar 

  • Thut, G., Nietzel, A., Brandt, S. A., & Pascual-Leone, A. (2006). Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. Journal of Neuroscience, 26(37), 9494–9502.

    Article  PubMed  Google Scholar 

  • van Gerven, M., & Jensen, O. (2009). Attention modulations of posterior alpha as a control signal for two-dimensional brain–computer interfaces. Journal of Neuroscience and Methods., 179(1), 78–84. doi:10.1016/j.jneumeth.2009.01.016

    Article  Google Scholar 

  • van Lutterveld, R., Houlihan, S. D., Pal, P., Cacchet, M. D., McFarlane-Blake, C., Sullivan, J. S., Ossadtchi, A., Druker, S., Cauer, C., & Brewer, J. A. (2016). Source-space EEG neurofeedback links subjective experience with brain activity during effortless awareness meditation. NeuroImage. doi:10.1016/j.neuroimage.2016.02.047 (Epub ahead of print).

  • Vernon, D., Egner, T., Cooper, N., Compton, T., Neilands, C., Sheri, A., et al. (2003). The effect of training distinct neurofeedback protocols on aspects of cognitive performance. International Journal Psychophysiology., 47(1), 75–85. doi:10.1016/S0167-8760(02)00091-0

    Article  Google Scholar 

  • Vossen, A., Gross, J., & Thut, G. (2015). Alpha power increase after transcranial alternating current stimulation at alpha frequency (α-tACS) reflects plastic changes rather than entrainment. Brain Stimulation., 8(3), 499–508. doi:10.1016/j.brs.2014.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, J.-R., & Hsieh, S. (2014). Neurofeedback training improves attention and working memory performance. Clinical Neurophysiology, 142(1), 2406–2420. doi:10.1016/j.clinph.2013.05.020

    Article  Google Scholar 

  • Whitt, J. L., Petrus, E., & Lee, H. K. (2013). Experience-dependent homeostatic synaptic plasticity in neocortex. Neuropharmacology, 78, 45–54. doi:10.1016/j.neuropharm.2013.02.016

    Article  PubMed  PubMed Central  Google Scholar 

  • Witte, M. (2015). With body and soul—A comparison of self-regulatory mechanisms required for neurofeedback in triathletes and healthy controls. In OHBM Alpine chapter symposium and 15th Austrian fMRI symposium, Wien, 27 November 2015.

    Google Scholar 

  • Witte, M., Kober, S. E., Ninaus, M., Neuper, C., & Wood, G. (2013). Control beliefs can predict the ability to up-regulate sensorimotor rhythm during neurofeedback training. Frontiers in Human Neuroscience., 7, 478. doi:10.3389/fnhum.2013.00478

    Article  PubMed  PubMed Central  Google Scholar 

  • Wood, G., Kober, S. E., Witte, M., & Neuper, C. (2014). On the need to better specify the concept of “control” in brain–computer-interfaces/neurofeedback research. Frontiers in Systems Neuroscience., 8, 171. doi:10.3389/fnsys.2014.00171

    Article  PubMed  PubMed Central  Google Scholar 

  • Enriquez-Geppert, S., Huster, R. J., & Herrmann, C. S. (subm.). EEG-neurofeedback as a tool to modulate brain oscillations: A review tutorial.

    Google Scholar 

  • Zaehle, T., Rach, S., & Herrmann, C. S. (2010). Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS ONE, 5(11), e13766. doi:10.1371/journal.pone.0013766

    Article  PubMed  PubMed Central  Google Scholar 

  • Zoefel, B., Huster, R. J., & Herrmann, C. S. (2010). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage., 54(2), 1427–1431. doi:10.1016/j.neuroimage.2010.08.078

    Article  PubMed  Google Scholar 

  • Zotev, V., Krueger, F., Phillipps, R., Alvarez, R. P., Simmons, R. K., Bellgowan, P., et al. (2011). Self-regulation of amygdala activation using real-time fMRI neurofeedback. PLoS ONE, 6, e24522.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zotev, V., Phillips, R., Yuan, H., Misaki, M., & Bodurka, J. (2014). Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback. NeuroImage, 85, 985–995.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Enriquez-Geppert .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Enriquez-Geppert, S., Huster, R.J., Ros, T., Wood, G. (2017). Neurofeedback. In: Theory-Driven Approaches to Cognitive Enhancement. Springer, Cham. https://doi.org/10.1007/978-3-319-57505-6_11

Download citation

Publish with us

Policies and ethics