Skip to main content

Nanomaterials in Food Industry and Packaging

  • Chapter
  • First Online:
Nanomaterials in Daily Life

Abstract

Nanomaterials are playing significant role in agriculture, by inclusion into fertilizer compounds and supplyin.g the necessary nutrition for the growing plants. Nanomaterials with the nanotechnology used in fertilizers and plant protecting are divided into three categories such as (1) nanoscale fertilizer input, (2) nanoscale additives, and (3) nanoscale coatings or host materials for fertilizers.

Without food we cannot survive, and that is why issues affecting food industry are so important.

Marcus Samuelsson

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahvenainen, R.: Novel food packaging techniques. Woodhead Publishing, CRC Press, Cambridge, England (2003). eBook ISBN: 9781855737020, Hardcover ISBN: 9781855736757

    Google Scholar 

  • Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng R Reports, 28(1–2), 1–63 (2000). doi:10.1016/S0927-796X(00)00012-7

  • Azeredo, H.M.C.: Nanocomposites for food packaging applications. Food Res. Int. 42, 1240–1253 (2009). doi:10.1016/j.foodres.2009.03.019

    Article  Google Scholar 

  • Bagchi, D., Bagchi, M., Moriyama, H., Shahidi, F.: Bio-Nanotechnology: A Revolution in Food, Biomedical and Health Sciences, 820 p. Wiley-Blackwell (2013). ISBN: 978-0-470-67037-8

    Google Scholar 

  • Bakker, A.: Applied Computational Fluid Dynamics, Lecture-9 Kolmogorov’s Theory. www.bakker.org/dartmouth06/engs150/09-kolm.ppt (2000)

  • Bhunia, K., Sablani, S.S., Tang, J., Rasco, B.: Migration of chemical compounds from packaging polymers during microwave, conventional heat treatment, and storage. Compr. Rev. Food Sci. Food Saf. 12, 523–545 (2013). doi:10.1111/1541-4337.12028

  • Brockgreitens, J., Abbas, A.: Responsive food packaging: recent progress and technological prospects. Compr. Rev. Food Sci. Food Saf. 15, 3–15 (2016). doi:10.1111/1541-4337.12174

  • Couch, L.M., Wien, M., Brown, J.L., Davidson, P.: Food nanotechnology: proposed uses, safety concerns and regulations. Agro FOOD Industry Hi Tech, vol. 27(1), January/February, http://old.teknoscienze.com//articles/agro-food-industry-hi-tech-food-nanotechnology-proposed-uses.aspx#.WMpR1oVOLD4

  • Eastoe, J., Tabor, R.F.: Chapter: Surfactants and nanoscience in the Colloidal Foundation of Nanoscience. Elsevier (2014). ISBN: 978-0-444-59541-6

    Google Scholar 

  • Ezhilarasi, P.N., Karthik, P., Chhanwal, N., Anandharamakrishnan, C.: Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess. Technol. (2012). doi:10.1007/s11947-012-0944-0

  • Friberg, S.E.: Micelles, microemulsions, liquid crystals, and the structure of stratum corneum lipids. J. Soc. Cosmet. Chem. 41, 155–171 (1990). http://journal.scconline.org/abstracts/cc1990/cc041n03/p00155-p00171.html

  • Ghormade, V., Deshpande, M.V., Paknikar, K.M.: Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 29, 792–803 (2011). doi:10.1016/j.biotechadv.2011.06.007

  • Grumezescu, A.: Emulsions: Nanotechnology in the Agri-Food Industry, vol. 3. Elsevier (2016). ISNB 978-0-12-804306-6. http://www.nature.com/subjects/nanobiotechnology

  • Jaworska, M., Sikora, E., Ogonowski, J.: Rheological properties of nanoemulsions stabilized by Polysorbate 80. Chem. Eng. Technol. 38, 1469–1476 (2015). doi:10.1002/ceat.201500069

  • Kadoya, T.: Food Packaging. Kanagawa University, Imprint, Academic Press (1999). eBook ISBN: 9780080923956, Hardcover ISBN: 9780123935908

    Google Scholar 

  • Kerry, J.P., O’Grady, M.N., Hogan, S.A.: Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: a review. Meat Sci. 74, 113–130 (2006). doi:10.1016/j.meatsci.2006.04.024

  • Khot, L.R., Sankaran, S., Maja, J.M., Ehsani, R., Schuster, E.W.: Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot. 35, 64–70 (2012). doi:10.1016/j.cropro.2012.01.007

    Article  Google Scholar 

  • Komaiko, J.S., McClements, D.J.: Formation of food-grade nanoemulsions using low-energy preparation methods: a review of available methods. Compr. Rev. Food Sci. Food Saf. 15, 331–352 (2016). doi:10.1111/1541-4337.12189

  • Kralchevsky, P.A., Ivanov, I.B., Ananthapadmanabhan, K.P., Lip, A.: On the thermodynamics of particle-stabilized emulsions: curvature effects and catastrophic phase inversion. Langmuir 21, 50–63 (2005). doi:10.1021/la047793d

  • Labuza, T.P., Breene, W.M.: Applications of active packaging for improvement of shelf-life and quality of fresh and extended shelf-life foods. J. Food Process. Preserv. 13 1–69 (1989). doi:10.1111/j.1745-4549.1989.tb00090.x

  • Langevin, D.: Micelles and microemulsions. Annu. Rev. Phys. Chem. 43, 341–349 (1992). doi:10.1146/annurev.pc.43.100192.002013

  • Lee, S.Y., Lee, S.J., Choi, D.S., Hur, S.J.: Current topics in active and intelligent food packaging for preservation of fresh foods. J. Sci. Food Agric. 95, 2799–2810 (2015). doi:10.1002/jsfa.7218

  • Mahmoud, M., Berekaa, M.M.: Nanotechnology in food industry; advances in food processing, packaging and food safety. Int. J. Curr. Microbiol. Appl. Sci. 4(5), 345–357. http://www.ijcmas.com

  • McClements, D.J.: Nanoscale nutrient delivery systems for food applications: improving bioactive dispersibility, stability, and bioavailability. J. Food Sci. 80, N1602–N1611 (2015a). doi:10.1111/1750-3841.12919

  • McClements, D.J.: Food Emulsions: Principles, Practices, and Techniques, 3rd edn. CRC Press (2015b). ISBN 9781498726689

    Google Scholar 

  • Nair, R., Varghese, H.S., Nair, B.G., Maekawa, T., Yoshida, Y., Kumar, D.S.: Nanoparticulate material delivery to plants. Plant Sci. 179, 154–163 (2010). doi:10.1016/j.plantsci.2010.04.012

    Article  Google Scholar 

  • Oxford Dictionary on-line: Food processing (2016). https://en.oxforddictionaries.com/definition/food_processing

  • Páhi, A.B., Varga, D., Király, Z., Mastalir, A.: Thermodynamics of micelle formation of the ephedrine-based chiral cationic surfactant DMEB in water, and the intercalation of DMEB in montmorillonite. Colloids Surf. A Physicochem. Eng. Aspects 319, 77–83 (2008). doi:10.1016/j.colsurfa.2007.06.056

    Article  Google Scholar 

  • Pitt, J.I., Hocking, A.D.: Fungi and Food Spoilage. Springer (2009). 10.1007/978-0-387-92207-2. ISBN: 978-0-387-92206-5

  • Pradhan, N., Singh, S., Ojha, N., Shrivastava, A., Barla, A., Rai, V., et al.:. Facets of Nanotechnology as Seen in Food Processing, Packaging, and Preservation Industry, Hindawi Publishing Corporation, BioMed Research International, Article ID 365672, 17 p. (2015). doi:10.1155/2015/365672

  • Quintanilla-Carvajal, M.X., Camacho-Díaz, B.H., Meraz-Torres, L.S., et al.: Nanoencapsulation: a new trend in food engineering processing. Food Eng. Rev. 2, 39 (2010). doi:10.1007/s12393-009-9012-6

  • Rai, M., Ribeiro, C., Mattoso, L., Duran, N.: Nanotechnologies in Food and Agriculture. Springer, Switzerland (2015). doi:10.1007/978-3-319-14024-7. ISBN: 978-3-319-14023-0 (Print) 978-3-319-14024-7 (Online)

  • Ravichandran, R.: Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. Int. J. Green Nanotechnol. Phys. Chem. 1, 72–P96 (2010). doi:10.1080/19430871003684440

  • Salager, J.L., Forgiarini, A.M., Márquez, L., et al.: How to attain an ultralow interfacial tension and a three-phase behavior with a surfactant formulation for enhanced oil recovery: a review. Part 2. Performance improvement trends from Winsor’s premise to currently proposed inter- and intra-molecular mixtures. J. Surfact. Deterg. 16, 631 (2013). doi:10.1007/s11743-013-1485-x

  • Santana, R.C., Perrechil, F.A., Cunha, R.L.: High- and low-energy emulsifications for food applications: a focus on process parameters. Food Eng. Rev. 5, 107 (2013). doi:10.1007/s12393-013-9065-4

  • Sugumar, S., Nirmala, J., Ghosh, V., Anjali, H., Mukherjee, A., Chandrasekaran, N.: Bio-based nanoemulsion formulation, characterization and antibacterial activity against food-borne pathogens. J. Basic Microbiol. 53, 677–685 (2013). doi:10.1002/jobm.201200060

  • Tadros, T.F.: Emulsion Formation and Stability, 272 p. Wiley (2013). doi:10.1002/9783527647941. ISBN: 978-3-527-31991-6

  • Thiam, A.R., Farese Jr, R.V. & Walther, T.C.: The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 14, 775–786 (2013) doi:10.1038/nrm3699

  • Weiss, J., Takhistov, P., McClements, D.J.: Functional materials in food nanotechnology. J. Food Sci. 71, R107–R116 (2006). doi:10.1111/j.1750-3841.2006.00195.x

  • Wilking, J.N.: The structure and Rheology of Nanoemulsions. Ph.D. thesis, University of California, Los Angeles (2008)

    Google Scholar 

  • Wyser, Y., Adams, M., Avella, M., Carlander, D., Garcia, L., Pieper, G., et al.: Outlook and challenges of nanotechnologies for food packaging. Packag. Technol. Sci. 29, 615–648 (2016). doi:10.1002/pts.2221

  • Yada, R.: Nanotechnology in the food industry: applications, opportunities and challenges. In: Global Food Safety Solutions for Today and Tomorrow Conference, October 23–25, Crown Plaza, Blanchardstown, Dublin, Ireland (2012). http://www.ifsti.ie/public/events_GFSC/Yada%20GFSC2012%20S4.pdf

  • Yam, K.L.: The Wiley Encyclopedia of Packaging Technology, 3rd edn. Copyright John Wiley and Sons (2009). doi:10.1002/9780470541395. ISBN 978-0-470-08704-6

  • Yam, K.L., Takhistov, P.T., Miltz, J.: Intelligent packaging: concepts and applications, Concise Reviews/Hypotheses in Food Science. J. Food Sci. 70(1), 1–10 (2005). doi:10.1111/j.1365-2621.2005.tb09052.x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhypargul Abdullaeva .

Appendices

Questions and Exercises

  1. 1.

    Describe the role of nanomaterials in agriculture and define the term nanobiotechnology.

  2. 2.

    What kind of nanoparticles are included into pesticides used for agricultural purpose?

  3. 3.

    Explain the controlled spray droplet system application of nanoformulations in pesticides.

  4. 4.

    Give definitions for the terms: food science, association colloids, and nanoemulsions.

  5. 5.

    What are the components and functional ingredients of drugs, vitamins, antimicrobials, antioxidants, flavorings, colorants, and preservatives?

  6. 6.

    Define the term nanolaminate applied for food industry and describe top-bottom and bottom-up approaches in the food science.

  7. 7.

    Define the term food processing, nanoencapsulation, and nanoemulsification.

  8. 8.

    Classify the main techniques used for nanoencapsulation of substances in the food industry.

  9. 9.

    Classify the main techniques used for nanoemulsification in the food industry.

  10. 10.

    What kinds of nanocomposites can be used for nanoencapsulation and nanoemulsification in the food industry?

  11. 11.

    Describe the principle of emulsification based on the input energy, interfacial tension, and oil–water interface.

  12. 12.

    Describe the relation between nanoemulsion droplet size and emulsion concentration during homogenization process.

  13. 13.

    Describe the functions of the Laplace pressure for spherical and non-spherical droplets.

  14. 14.

    What is importance of the hydrophil/lipophil balance (HLB) and the hydrophilic/lipophilic deviation (HLD) numbers during emulsification?

  15. 15.

    What kind of factors can cause nanoemulsions rheology and breakdown processes?

  16. 16.

    Describe the principles of active, intelligent, and smart packaging in shelf-life and quality extension of food products.

  17. 17.

    What kind of human health impairments can appear due to hazardous components used in the food packages?

Problem drills

  1. 1.

    Calculate the surface tension for spherical hydrocarbon droplet with the radius of 100 nm if the Laplace pressure \(\Delta p = 10^{6} \;{\text{Pa}}\) (10 atm.).

  2. 2.

    Diameters of the oil emulsion droplets obtained by hand shaking and shaking by mixer are 15 and 2.8 μm, respectively. Calculate the dispersity, specific surface area of droplets obtained by mixer, and hand shaking and the dispersity ratio, if the density of oil droplets is \(1.5 \times 10^{3} \;{{\text{kg}} \mathord{\left/ {\vphantom {{\text{kg}} {{\text{m}}^{ 3} }}} \right. \kern-0pt} {{\text{m}}^{ 3} }}\).

  3. 3.

    Draw the structure for silver iodide (AgJ) micelle formed by the chemical reaction: \({\text{AgNO}}_{3} + {\text{HI}} \to {\text{AgI}} + {\text{HNO}}_{3}\), if AgNO3 used as stabilizing agent. Show charges for ions in the colloidal micelle particle.

  4. 4.

    Find the Gibbs energy \({(\Delta }G_{mic} )\) for micelle formation at the critical micelle concentration of 0.50 and the temperature of 25 °C.

  5. 5.

    Find the mass of hydrophilic molecule portion for Brij® S10 surfactant with molecular formula of C18H37(OCH2CH2)nOH, where n ~ 10 and the HLB number of 12 used in emulsification.

Answers:

  1. 1.

    \(\gamma = 50\,{\text{mN}}\,{\text{m}}^{ - 1}\)

  2. 2.

    \(D_{\text{mixer}} = 3.57 \times 10^{5} \,{\text{m}}^{ - 1}\); \(D_{{{\text{hand}}\,{\text{shaking}}}} = 6.66 \times 10^{4} \,{\text{m}}^{ - 1}\); \(S_{\text{specific}}^{\text{mixer}} = 1.42 \times 10^{2} \,{\text{m}}^{2}\); \(S_{\text{specific}}^{{{\text{hand }}\,{\text{shaking}}}} = 2.66 \times 10^{2} \,{\text{m}}^{2}\); \({{D_{\text{mixer}} } \mathord{\left/ {\vphantom {{D_{\text{mixer}} } {D_{{{\text{hand}}\;{\text{shaking}}}} }}} \right. \kern-0pt} {D_{{{\text{hand}}\;{\text{shaking}}}} }} = 5.3\) and \({{S_{\text{specific}}^{\text{mixer}} } \mathord{\left/ {\vphantom {{S_{\text{specific}}^{\text{mixer}} } {S_{\text{specific}}^{{{\text{hand}}\;{\text{shaking}}}} }}} \right. \kern-0pt} {S_{\text{specific}}^{{{\text{hand}}\;{\text{shaking}}}} }} = 0.5\).

  3. 3.

    Structure of the silver iodide micelle:

  4. 4.

    −7.42 kJ/mol.

  5. 5.

    426.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Abdullaeva, Z. (2017). Nanomaterials in Food Industry and Packaging. In: Nanomaterials in Daily Life. Springer, Cham. https://doi.org/10.1007/978-3-319-57216-1_2

Download citation

Publish with us

Policies and ethics