Skip to main content

RNA Secondary Structure Prediction: Soft Computing Perspective

  • Chapter
  • First Online:
Granular Neural Networks, Pattern Recognition and Bioinformatics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 712))

Abstract

The availability of huge amount of biological data has opened a new direction in genomic analysis and structural prediction of deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and proteins in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Appl. Math. 104, 45–62 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bakin, A., Ofengand, J.: Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. Biochemistry 32, 9754–62 (1993)

    Article  Google Scholar 

  3. Batenburg, F.H.V., Gultyaev, A.P., Pleij, C.W.: An APL-programmed genetic algorithm for the prediction of RNA secondary structure. J. Theor. Biol. 174(3), 269–280 (1995)

    Article  Google Scholar 

  4. Batey, R.T., Gilbert, S.D., Montange, R.K.: Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432, 411–415 (2004)

    Article  Google Scholar 

  5. Bindewald, E., Shapiro, B.A.: RNA secondary structure prediction from sequence alignments using a network of k-nearest neighbor classifiers. RNA 12, 342–352 (2006)

    Article  Google Scholar 

  6. Booker, L.B., Goldberg, D.E., Holland, J.H.: Classifier systems and genetic algorithms. Artif. Intell. 40, 235–282 (1989)

    Article  Google Scholar 

  7. Cannone, J., Subramanian, S., Schnare, M., Collett, J., Dśouza, L., Du, Y., Feng, B., Lin, N., Madabusi, L., Muller, K., Pande, N., Shang, Z., Yu, N., Gutell, R.: The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAS. BMC Bioinform. 3(1), 2 (2002)

    Article  Google Scholar 

  8. Crick, F.H.: Codon-anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19, 548–55 (1966)

    Article  Google Scholar 

  9. Daou-Chabo, R., Condon, C.: RNase J1 endonuclease activity as a probe of RNA secondary structure. RNA 15, 1417–25 (2009)

    Article  Google Scholar 

  10. Ding, Y., Chan, C.Y., Lawrence, C.E.: Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res. 32, W135–W141 (2004)

    Article  Google Scholar 

  11. Ding, Y., Chan, C.Y., Lawrence, C.E.: RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. RNA 11(8), 1157–1166 (2005)

    Article  Google Scholar 

  12. Ding, Y., Lawrence, C.E.: A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res. 31, 7280–7301 (2003)

    Article  Google Scholar 

  13. Doetsch, M., Schroeder, R., Furtig, B.: Transient RNA protein interactions in RNA folding. FEBS J. 278(4), 1634–1642 (2011)

    Article  Google Scholar 

  14. Doherty, E.A., Batey, R.T., Masquida, B., Doudna, J.A.: A universal mode of helix packing in RNA. Nat. Struct. Biol. 8, 339–343 (2001)

    Article  Google Scholar 

  15. Doshi, K.J., Cannone, J.J., Cobaugh, C.W., Gutell, R.R.: Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction. BMC Bioinform. 5(105), 1–22 (2004)

    Google Scholar 

  16. Esogbue, A.O., Kacprzyk, J.: Fuzzy dynamic programming: main developments and applications. Fuzzy Sets Syst. 81, 31–45 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ferentz, A.E., Wagner, G.: Nmr spectroscopy: a multifaceted approach to macromolecular structure. Q. Rev. Biophys. 33, 29–65 (2000)

    Article  Google Scholar 

  18. Ganivada, A., Ray, S.S., Pal, S.K.: Fuzzy rough granular self-organizing map and fuzzy rough entropy. Theoret. Comput. Sci. 466, 37–63 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Goldberg, D.: Genetic Algorithms in Optimization, Search, and Machine Learning. Addison Wesley, Reading (1989)

    MATH  Google Scholar 

  20. Grner, W., Giegerich, R., Strothmann, D., Reidys, C., Weber, J., Hofacker, I.L., Stadler, P.F., Schuster, P.: Analysis of RNA sequence structure maps by exhaustive enumeration. II. structures of neutral networks and shape space covering. Monatsh. Chem. Mon. 127, 375–389 (1996). doi:10.1093/nar/gks468

    Article  Google Scholar 

  21. Grner, W., Giegerich, R., Strothmann, D., Reidys, C., Weber, J., Hofacker, I.L., Stadler, P.F., Schuster, P.: Modeling and automation of sequencing-based characterization of RNA structure. Proc. Natl. Aca. Sci. USA 108(27), 11,069–11,074 (2011)

    Article  Google Scholar 

  22. Gultyaev, A.P., Batenburg, F.H.V., Pleij, C.W.: The computer simulation of RNA folding pathways using an genetic algorithm. J. Mol. Biol. 250, 37–51 (1995)

    Article  Google Scholar 

  23. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, Upper Saddle River (1998)

    MATH  Google Scholar 

  24. Haynes, T., Knisley, D., Knisley, J.: Using a neural network to identify secondary RNA structures quantified by graphical invariants. MATCH Commun. Math. Comput. Chem. 60, 277–290 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S., Tacker, M., Schuster, P.: Fast folding and comparison of RNA secondary structures. Monats. Chem. Mon. 125, 167–188 (1994)

    Article  Google Scholar 

  26. Hofacker, I.L.: Vienna RNA secondary structure server. Nucleic Acids Res. 31, 3429–31 (2003)

    Article  Google Scholar 

  27. Holley, R.W., Apgar, J., Everett, G.A., Madison, J.T., Marquisee, M., Merrill, S.H., Penswick, J.R., Zamir, A.: Structure of ribonucleic acid. Science 147, 1462–1465 (1965)

    Article  Google Scholar 

  28. Huber, P.W.: Chemical nucleases: their use in studying RNA structure and RNA-protein interactions. FASEB J. 7, 1367–1375 (1993)

    Google Scholar 

  29. Karaduman, R., Fabrizio, P., Hartmuth, K., Urlaub, H., L\(\ddot{u}\)hrmann, R.: RNA structure and RNA-protein interactions in purified yeast U6 snRNPs. J. Mol. Biol. 356, 1248–62 (2006)

    Google Scholar 

  30. Kasprzak, W., Shapiro, B.A.: Stem Trace: an interactive visual tool for comparative RNA structure analysis. Bioinformatics 15, 16–31 (1999)

    Article  Google Scholar 

  31. Kim, S.H., Quigley, G., Suddath, F.L., Rich, A.: High-resolution X-Ray diffraction patterns of crystalline transfer RNA that show helical regions. Proc. Natl. Aca. Sci. USA 68, 841–845 (1971)

    Article  Google Scholar 

  32. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  33. Koculi, E., Cho, S.S., Desai, R., Thirumalai, D., Woodson, S.A.: Folding path of P5abc RNA involves direct coupling of secondary and tertiary structures. Nucleic Acids Res. 1–10 (2012). doi:10.1093/nar/gks468

  34. Koessler, D.R., Knisley, D.J., Knisley, J., Haynes, T.: A predictive model for secondary RNA structure using graph theory and a neural network. BMC Bioinform. 11, S6–S21 (2010)

    Article  Google Scholar 

  35. Le, S., Nussinov, R., Maziel, J.: Tree graphs of RNA secondary structures and their comparison. Comput. Biomed. Res. 22, 461–473 (1989)

    Article  Google Scholar 

  36. Lehninger, A.L., Nelson, D.L., Cox, M.M.: Principles of Biochemistry. Worth, New York (1993)

    Google Scholar 

  37. Leontis, N.B., Westhof, E.: A common motif organizes the structure of multi-helix loops in 16S and 23S ribosomal RNAs. J. Mol. Biol. 283, 571–583 (1998)

    Article  Google Scholar 

  38. Leontis, N.B., Westhof, E.: Geometric nomenclature and classification of RNA base pairs. RNA 7, 499–512 (2001)

    Article  Google Scholar 

  39. Liu, Q., Ye, X., Zhang, Y.: A Hopfield neural network based algorithm for RNA secondary structure prediction. In: Proceedings of the 1st International Conference on Multi-Symposiums on Computer and Computational Sciences, pp. 1–7 (2006)

    Google Scholar 

  40. Lodish, H., Berk, A., Kaiser, C.A., Krieger, M., Scott, M.P., Bretscher, A., Ploegh, H., Matsudaira, P.: Molecular Cell Biology, 5th edn. W. H. Freeman, New York (2003)

    Google Scholar 

  41. Low, J.T., Weeks, K.M.: Shape-directed RNA secondary structure prediction. Methods 52(2), 150–158 (2010)

    Article  Google Scholar 

  42. Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence of thermodynamic parameters improves prediction of rna secondary structure. J. Mol. Biol. 288, 911–940 (1999)

    Article  Google Scholar 

  43. Mathews, D.H., Disney, M.D., Childs, J.L., Schroeder, S.J., Zuker, M., Turner, D.H.: Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl. Acad. Sci. USA 101, 7287–7292 (2004)

    Article  Google Scholar 

  44. Mathews, D.H.: Predicting RNA secondary structure by free energy minimization. Theor. Chem. Acc. Theor. Comput. Model. 116, 160–168 (2006)

    Article  Google Scholar 

  45. McCaskill, J.S.: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1105–1119 (1990)

    Article  Google Scholar 

  46. Meyer, I.M., Miklos, I.: Co-transcriptional folding is encoded within RNA genes. BMC Mol. Biol. 5, 1–10 (2004). doi:10.1186/1471-2199-5-10

    Article  Google Scholar 

  47. Mitchell, M., Forrest, S., Holland, J.H.: The royal road for genetic algorithms: fitness landscapes and GA performance. In: Proceedings of the 1st European Conference on Artificial Life (1992)

    Google Scholar 

  48. Needleman, S.B.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–53 (1970)

    Article  Google Scholar 

  49. Neethling, M., Engelbrecht, A.: Determining RNA secondary structure using set-based particle swarm optimization. In: IEEE Congress on Evolutionary Computation, pp. 6134–6141 (2006)

    Google Scholar 

  50. Noller, H.F., Chaires, J.B.: Functional modification of 16s ribosomal RNA by kethoxal. Proc. Natl. Acad. Sci. USA 69, 3115–3118 (1972)

    Article  Google Scholar 

  51. Nussinov, R., Piecznik, G., Griggs, J.R., Kleitman, D.J.: Algorithms for loop matching. SIAM J. Appl. Math. 35, 68–82 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  52. Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc. Natl. Aca. Sci. USA 77(11), 6309–6313 (1980)

    Article  Google Scholar 

  53. Pal, S.K., Bandyopadhyay, S., Ray, S.S.: Evolutionary computation in bioinformatics: a review. IEEE Trans. Syst. Man Cybern. Part C 36(5), 601–615 (2006)

    Article  Google Scholar 

  54. Pal, S.K., Ghosh, A.: Soft computing data mining. Inf. Sci. 163, 1–3 (2004)

    Article  Google Scholar 

  55. Pal, S.K., Skowron, A.: Rough-Fuzzy Hybridization: A New Trend in Decision Making. Springer, New York (1999)

    MATH  Google Scholar 

  56. Rambo, R.P., Tainer, J.A.: Improving small-angle X-ray scattering data for structural analyses of the RNA world. RNA 16, 638–46 (2010)

    Article  Google Scholar 

  57. Ray, S.S., Bandyopadhyay, S., Mitra, P., Pal, S.K.: Bioinformatics in neurocomputing framework. IEE Proc. Circuits Devices Syst. 152, 556–564 (2005)

    Article  Google Scholar 

  58. Ray, S.S., Halder, S., Kaypee, S., Bhattacharyya, D.: HD-RNAS: an automated hierarchical database of RNA structures. Front. Genet. 3(59), 1–10 (2012)

    Google Scholar 

  59. Ray, S.S., Pal, S.K.: RNA secondary structure prediction using soft computing. IEEE/ACM Trans. Comput. Biol. Bioinf. 10(1), 2–17 (2013)

    Article  Google Scholar 

  60. Regulski, E.E., Breaker, R.R.: In-line probing analysis of riboswitches. Meth. Mol. Biol. 419, 53–67 (2008)

    Article  Google Scholar 

  61. Schmitz, M., Steger, G.: Description of RNA folding by simulated annealing. J. Mol. Biol. 255(1), 254–66 (1996)

    Article  Google Scholar 

  62. Schultes, E.A., Bartel, D.P.: One sequence, two ribozymes: implications for the emergence of new ribozyme folds. Science 289, 448–452 (2000)

    Article  Google Scholar 

  63. Shapiro, B.A., Bengali, D., Kasprzak, W., Wu, J.C.: RNA folding pathway functional intermediates: their prediction and analysis. J. Mol. Biol. 312, 27–44 (2001)

    Article  Google Scholar 

  64. Shapiro, B.A., Wu, J.C., Bengali, D., Potts, M.J.: The massively parallel genetic algorithm for RNA folding: MIMD implementation and population variation. Bioinformatics 17(2), 137–148 (2001)

    Article  Google Scholar 

  65. Shapiro, B.A., Navetta, J.: A massively parallel genetic algorithm for RNA secondary structure prediction. J. Supercomput. 8, 195–207 (1994)

    Article  MATH  Google Scholar 

  66. Shapiro, B.A., Wu, J.C.: An annealing mutation operator in the genetic algorithms for RNA folding. J. Supercomput. 12, 171–180 (1996)

    Google Scholar 

  67. Shapiro, B.A., Wu, J.C.: Predicting h-type pseudoknots with the massively parallel genetic algorithm. Comput. Appl. Biosci. 13, 459–471 (1997)

    Google Scholar 

  68. Singer, B.: All oxygens in nucleic acids react with carcinogenic ethylating agents. Nature 264, 333–339 (1976)

    Article  Google Scholar 

  69. Song, D., Deng, Z.: A fuzzy dynamic programming approach to predict RNA secondary structure. In: Algorithms in Bioinformatics: Lecture Notes in Computer Science, vol. 4175, pp. 242–251 (2006)

    Google Scholar 

  70. Tijerina, P., Mohr, S., Russell, R.: DMS footprinting of structured RNAs and RNA-protein complexes. Nat. Protoc. 2, 2608–23 (2007)

    Article  Google Scholar 

  71. Tinoco, I.J., Borer, P.N., Dengler, B., Levin, M.D., Uhlenbeck, O.C., Crothers, D.M., Bralla, J.: Improved estimation of secondary structure in ribonucleic acids. Nat. New Biol. 246, 40–41 (1973)

    Article  Google Scholar 

  72. Tinoco, T., Bustamante, C.: How RNA folds. J. Mol. Biol. 293(1), 271–281 (1999)

    Article  Google Scholar 

  73. Tsang, H.H., Wiese, K.C.: SARNA-predict: accuracy improvement of RNA secondary structure prediction using permutation based simulated annealing. IEEE/ACM Trans. Comput. Biol. Bioinf. 7(4), 727–740 (2010)

    Article  Google Scholar 

  74. Tullius, T.D., Dombroski, B.A.: Hydroxyl radical footprinting: high-resolution information about DNA-protein contacts and application to lambda repressor and Cro protein. Proc. Natl. Acad. Sci. USA 83, 5469–5473 (1986)

    Article  Google Scholar 

  75. Turner, D.H., Mathews, D.H.: NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res. 38, D280–D282 (2009)

    Article  Google Scholar 

  76. Turner, D.H., Sugimoto, N.: RNA structure prediction. Annu. Rev. Biophys. Biophys. Chem. 17, 167–192 (1988)

    Article  Google Scholar 

  77. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  78. Varani, G., McClain, W.H.: The G x U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems. EMBO Rep. 1, 18–23 (2000)

    Article  Google Scholar 

  79. Waterman, M.S.: RNA secondary structure: a complete mathematical analysis. Math. Biosci. 42, 257–266 (1978)

    Article  MATH  Google Scholar 

  80. Waterman, M., Smith, T.: Rapid dynamic programming algorithms for RNA secondary structure. Adv. Appl. Math. 7(0196–8858/86), 455–464 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  81. Watson, J.D., Crick, F.H.C.: Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953)

    Article  Google Scholar 

  82. Westhof, E., Auffinger, P.: RNA tertiary structure, encyclopedia of analytical chemistry. In: Meyers, R.A. (Ed.), pp. 5222–5232. Wiley, Chichester (2000)

    Google Scholar 

  83. Westhof, E., Masquida, B., Jossinet, F.: Predicting and modeling RNA architecture. Cold Spring Harb. Perspect. Biol. a003632, 1–12 (2011)

    Google Scholar 

  84. Wiese, K.C., Deschenes, A., Glen, E.: Permutation based RNA secondary structure prediction via a genetic algorithm. In: Proceedings of the 2003 Congress on Evolutionary Computation, pp. 335–342 (2003)

    Google Scholar 

  85. Wiese, K.C., Deschênes, A.A., Hendriks, A.G.: RnaPredict-an evolutionary algorithm for RNA secondary structure prediction. IEEE/ACM Trans. Comput. Biol. Bioinf. 5(1), 25–41 (2008)

    Article  Google Scholar 

  86. Wiese, K.C., Glen, E.: A permutation-based genetic algorithm for the RNA folding problem: a critical look at selection strategies, crossover operators, and representation issues. Biosystems 72, 29–41 (2003)

    Article  Google Scholar 

  87. Wiese, K.C., Hendriks, A.: Comparison of P-RnaPredict and mfold-algorithms for RNA secondary structure prediction. Bioinformatics 22(8), 934–942 (2006)

    Article  Google Scholar 

  88. Xayaphoummine, A., Bucher, T., Isambert, H.: Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots. Nucleic Acids Res. 33, W605–W610 (2005). doi:10.1186/1471-2199-5-10

    Article  Google Scholar 

  89. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  90. Zadeh, L.A.: Fuzzy logic, neural networks, and soft computing. Commun. ACM 37, 77–84 (1994)

    Article  Google Scholar 

  91. Zhang, G.P.: Neural networks for classification: a survey. IEEE Trans. Syst. Man Cybernet. Part C 30(4), 451–462 (2000)

    Article  Google Scholar 

  92. Zhao, Y., Wang, Z.: Consensus RNA secondary structure prediction based on support vector machine classification. Chin. J. Biotechnol. 24(7), 1140–1148 (2008)

    Article  Google Scholar 

  93. Zou, Q., Zhao, T., Liu, Y., Guo, M.: Predicting RNA secondary structure based on the class information and Hopfield network. Comput. Biol. Med. 39(3), 206–214 (2009)

    Article  Google Scholar 

  94. Zuker, M.: On finding all suboptimal foldings of an rnamolecule. Science 244, 48–52 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  95. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003)

    Article  Google Scholar 

  96. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9(1), 133–148 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar K. Pal .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pal, S.K., Ray, S.S., Ganivada, A. (2017). RNA Secondary Structure Prediction: Soft Computing Perspective. In: Granular Neural Networks, Pattern Recognition and Bioinformatics. Studies in Computational Intelligence, vol 712. Springer, Cham. https://doi.org/10.1007/978-3-319-57115-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57115-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57113-3

  • Online ISBN: 978-3-319-57115-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics