Skip to main content

The Copy-Number Tree Mixture Deconvolution Problem and Applications to Multi-sample Bulk Sequencing Tumor Data

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10229))

Abstract

Cancer is an evolutionary process driven by somatic mutation. This process can be represented as a phylogenetic tree. Constructing such a phylogenetic tree from genome sequencing data is a challenging task due to the mutational complexity of cancer and the fact that nearly all cancer sequencing is of bulk tissue, measuring a superposition of somatic mutations present in different cells. We study the problem of reconstructing tumor phylogenies from copy number aberrations (CNAs) measured in bulk-sequencing data. We introduce the Copy-Number Tree Mixture Deconvolution (CNTMD) problem, which aims to find the phylogenetic tree with the fewest number of CNAs that explain the copy number data from multiple samples of a tumor. CNTMD generalizes two approaches that have been researched intensively in recent years: deconvolution/factorization algorithms that aim to infer the number and proportions of clones in a mixed tumor sample; and phylogenetic models of copy number evolution that model the dependencies between copy number events that affect the same genomic loci. We design an algorithm for solving the CNTMD problem and apply the algorithm to both simulated and real data. On simulated data, we find that our algorithm outperforms existing approaches that perform either deconvolution or phylogenetic tree construction under the assumption of a single tumor clone per sample. On real data, we analyze multiple samples from a prostate cancer patient, identifying clones within these samples and a phylogenetic tree that relates these clones and their differing proportions across samples. This phylogenetic tree provides a higher-resolution view of copy number evolution of this cancer than published analyses.

S. Zaccaria and M. El-Kebir—Joint first authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baumbusch, L.O., et al.: Comparison of the agilent, ROMA/NimbleGen and Illumina platforms for classification of copy number alterations in human breast tumors. BMC Genom. 9(1), 379 (2008)

    Article  Google Scholar 

  2. Carter, S.L., et al.: Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30(5), 413–421 (2012)

    Article  Google Scholar 

  3. Chowdhury, S.A., et al.: Algorithms to model single gene, single chromosome, and whole genome copy number changes jointly in tumor phylogenetics. PLoS Comput. Biol. 10(7), 1–19 (2014)

    Article  Google Scholar 

  4. Davis, A., et al.: Computing tumor trees from single cells. Genome Biol. 17, 1 (2016)

    Article  Google Scholar 

  5. Deshwar, A.G., et al.: PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors. Genome Biol. 16(1), 1 (2015)

    Article  Google Scholar 

  6. El-Kebir, M., et al.: Reconstruction of clonal trees and tumor composition from multi-sample sequencing data. Bioinformatics 31(12), i62–i70 (2015)

    Article  Google Scholar 

  7. El-Kebir, M., Raphael, B.J., Shamir, R., Sharan, R., Zaccaria, S., Zehavi, M., Zeira, R.: Copy-number evolution problems: complexity and algorithms. In: Frith, M., Storm Pedersen, C.N. (eds.) WABI 2016. LNCS, vol. 9838, pp. 137–149. Springer, Heidelberg (2016). doi:10.1007/978-3-319-43681-4_11

    Chapter  Google Scholar 

  8. El-Kebir, M., et al.: Inferring the mutational history of a tumor using multi-state perfect phylogeny mixtures. Cell Syst. 3(1), 43–53 (2016)

    Article  Google Scholar 

  9. Fischer, A., et al.: High-definition reconstruction of clonal composition in cancer. Cell Rep. 7(5), 1740–1752 (2014)

    Article  Google Scholar 

  10. Gavin, H., et al.: Titan: inference of copy number architectures in clonal cell populations from tumor whole genome sequence data. Genome Res. 24, 1881–1893 (2014)

    Article  Google Scholar 

  11. Gawad, C., et al.: Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17(3), 175–188 (2016)

    Article  MathSciNet  Google Scholar 

  12. Gerlinger, M., et al.: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366(10), 883–892 (2012)

    Article  Google Scholar 

  13. Gundem, G., et al.: The evolutionary history of lethal metastatic prostate cancer. Nature 520(7547), 353–357 (2015)

    Article  Google Scholar 

  14. Jiang, Y., et al.: Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing. PNAS 113, E5528–E5537 (2016)

    Article  Google Scholar 

  15. Li, Y., et al.: Allele-specific quantification of structural variations in cancer genomes. Cell Syst. 3(1), 21–34 (2016)

    Article  Google Scholar 

  16. Van Loo, P., et al.: Allele-specific copy number analysis of tumors. PNAS 107, 16910–16915 (2010)

    Article  Google Scholar 

  17. Malikic, S., et al.: Clonality inference in multiple tumor samples using phylogeny. Bioinformatics 31(9), 1349–1356 (2015)

    Article  Google Scholar 

  18. McPherson, A., Roth, A., Chauve, C., Sahinalp, S.C.: Joint inference of genome structure and content in heterogeneous tumor samples. In: Przytycka, T.M. (ed.) RECOMB 2015. LNCS, vol. 9029, pp. 256–258. Springer, Cham (2015). doi:10.1007/978-3-319-16706-0_25

    Google Scholar 

  19. McPherson, A., et al.: Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat. Genet. 48, 758–767 (2016). doi:10.1038/ng.3573

    Article  Google Scholar 

  20. Nik-Zainal, S., et al.: The life history of 21 breast cancers. Cell 149(5), 994–1007 (2012)

    Article  Google Scholar 

  21. Nowell, P.C.: The clonal evolution of tumor cell populations. Science 194, 23–28 (1976)

    Article  Google Scholar 

  22. Oesper, L., et al.: Reconstructing cancer genomes from paired-end sequencing data. BMC Bioinform. 13(6), S10 (2012)

    Article  Google Scholar 

  23. Oesper, L., et al.: THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data. Genome Biol. 14(7), R80 (2013)

    Article  Google Scholar 

  24. Roman, T., et al.: Medoidshift clustering applied to genomic bulk tumor data. BMC Genom. 17(1), 6 (2016)

    Article  Google Scholar 

  25. Schwarz, R.F., et al.: Phylogenetic quantification of intra-tumour heterogeneity. PLoS Comput. Biol. 10(4), 1–11 (2014)

    Article  Google Scholar 

  26. Schwarz, R.F., et al.: Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLoS Med 12(2), 1–20 (2015)

    Article  Google Scholar 

  27. Shamir, R., et al.: A linear-time algorithm for the copy number transformation problem. In: LIPIcs, vol. 54. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

    Google Scholar 

  28. Sottoriva, A., et al.: A Big Bang model of human colorectal tumor growth. Nat. Genet. 47(3), 209–216 (2015)

    Article  Google Scholar 

  29. Venkatesan, S., et al.: Tumor evolutionary principles: How intratumor heterogeneity influences cancer treatment and outcome. ASCO 35, e141–e149 (2015)

    Google Scholar 

  30. Zack, T.I., et al.: Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45(10), 1134–1140 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by a US National Science Foundation (NSF) CAREER Award (CCF-1053753) and US National Institutes of Health (NIH) grants R01HG005690 and R01HG007069 to BJR. BJR is supported by a Career Award at the Scientific Interface from the Burroughs Wellcome Fund, an Alfred P. Sloan Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. Raphael .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zaccaria, S., El-Kebir, M., Klau, G.W., Raphael, B.J. (2017). The Copy-Number Tree Mixture Deconvolution Problem and Applications to Multi-sample Bulk Sequencing Tumor Data. In: Sahinalp, S. (eds) Research in Computational Molecular Biology. RECOMB 2017. Lecture Notes in Computer Science(), vol 10229. Springer, Cham. https://doi.org/10.1007/978-3-319-56970-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56970-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56969-7

  • Online ISBN: 978-3-319-56970-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics