Skip to main content

Hydrothermal Pretreatment: Process Modeling and Economic Assessment Within the Framework of Biorefinery Processes

  • Chapter
  • First Online:
Hydrothermal Processing in Biorefineries

Abstract

Techno-economic evaluation of processes based on hydrothermal pretreatment is needed to set the current status and to identify processing bottlenecks that need to be addressed to make these processes viable. Having suitable models to carry simulations is a prerequisite for conducting such evaluations. The goal of this chapter is to discuss different approaches that can be used to model and simulate hydrothermal pretreatment processes using commercial process simulators. A discussion on possible flowsheets, as well as different ways to model biomass and chemical reactions, is presented. Rather than simply listing the different possibilities, the focus is on the rationale behind the selection of unit operations and models and the consequences each selection has. A brief discussion on possible improvements to be made to the current state-of-the-art models is also presented. Toward the end, the chapter provides a review of different criteria and usual assumptions that are made to calculate costs of biorefinery processes, and a summary of these costs for those flowsheets has analyzed inclusion of hydrothermal pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B, Montague L, Slayton A, Lukas J (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. NREL report NREL/TP-510-32438

    Google Scholar 

  • Albarelli JQ, Ensinas AV, Silva MA (2014) A new proposal of cellulosic ethanol to boost sugarcane biorefineries: techno-economic evaluation. International Journal of Chemical Engineering 2014: Article ID 537408, 11pp. http://dx.doi.org/10.1155/2014/537408

    Google Scholar 

  • Ashraf MT, Torres AI, Cybulska I, Fang CJ, Thomsen MH, Schmidt JE, Stephanopoulos G (2016) Optimization of lignocellulosic waste biorefinery using multi-actor multi-objective mathematical framework. In: Kravanja Z, Bogataj M (eds) 26th European symposium on computer aided process engineering. Portorož, Solvenia, Elsevier B.V, pp 1317–1322

    Chapter  Google Scholar 

  • Biomass Prices www.biomassenergycentre.org.uk http://www.foex.fi/biomass/ http://www.bbc.com/news/business/market_data/commodities/default.stm http://www.biofuelsdigest.com/

  • Bocheński T, Torres AI, Ashraf MT, Schmidt JE, Stephanopoulos G (2016) Evaluation of the production of lipids for fuels and proteins from microalgae by decomposition of the processing network. In: Kravanja Z, Bogataj M (eds) 26th European symposium on computer aided process engineering. Portorož, Solvenia, Elsevier B.V., pp 1635–1640

    Chapter  Google Scholar 

  • Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011: Article ID 787532. http://dx.doi.org/10.4061/2011/787532

  • Chemical Engineering Magazine http://www.chemengonline.com/

  • Conde-Mejia C, Jimenez-Gutierrez A, El-Hawalgi M (2012) A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Process Saf Environ Prot 90(3):189–202

    Article  Google Scholar 

  • Cybulska I, Brudecki G, Lei H (2013) Hydrothermal pretreatment of lignocellulosic biomass. In: Gu T (ed) Green biomass pretreatment for biofuels production. Springer, Berlin, pp 107–125

    Google Scholar 

  • Davis R, Tao L, Tan ECD, Biddy MJ, Beckham GT, Scarlata C, Jacobson J, Cafferty K, Ross J, Lukas J, Knorr D, Schoen P (2013) Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute-acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons. NREL report NREL/TP-5100-60223

    Google Scholar 

  • Davis R, Tao L, Scarlata C, Tan ECD, Ross J, Lukas J, Sexton D (2015) Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute-acid and enzymatic deconstruction of biomass to sugars and catalytic conversion of sugars to hydrocarbons. NREL report NREL/TP-5100-62498

    Google Scholar 

  • Dias MOS, Junqueira TL, Cavalett O, Cunha MP, Jesus CDF, Rossell CEV, Filho RM, Bonomi A (2012) Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresour Technol 103(1):152–161

    Article  Google Scholar 

  • Doherty W, Reynolds A, Kennedy D (2013) Aspen plus simulation of biomass gasification in a steam blown dual fluidised bed. In: Mendez-Vilas A (ed) Materials and processes for energy: communicating current research and technological developments. Formatex Research Center, Badajoz, pp 212–220

    Google Scholar 

  • Douglas JM (1988) Conceptual design of chemical processes, 1st edn. McGraw-Hill, New York

    Google Scholar 

  • Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96(18):2019–2025

    Article  Google Scholar 

  • Esteghlalian A, Hashimoto AG, Fenske JJ, Penner MH (1997) Modeling and optimization of the dilute sulfuric acid pretreatment of corn stover, poplar and switchgrass. Bioresour Technol 59:129–136

    Article  Google Scholar 

  • Garrote G, Dominguez H, Parajo J (1999) Hydrothermal processing of lignocellulosic materials. Holz als Roh-und Werkstoff 57(3):191–202

    Article  Google Scholar 

  • Ghosh D, Dasgupta D, Agrawal D, Kaul S, Adhikari DK, Kurmi AK, Arya PK, Bangwal D, Negi MG (2015) Fuels and chemicals from lignocellulosic biomass: an integrated biorefinery approach. Energy Fuel 29(5):3149–3157

    Article  Google Scholar 

  • Gong J, You F (2014) Global optimization for sustainable design and synthesis of algae processing network for CO2 mitigation and biofuel production using life cycle optimization. AIChE J 60(9):3195–3210

    Article  Google Scholar 

  • Gonzalez R, Treasure T, Phillips R, Jameel H, Saloni D, Abt R, Wright J (2011) Converting Eucalyptus biomass into ethanol: financial and sensitivity analysis in a co-current dilute acid process. Part II. Biomass Bioenergy 35(2):767–772

    Article  Google Scholar 

  • Google Scholar https://scholar.google.com. https://scholar.google.com. Accessed 12 Aug 2016

  • Hinman ND, Schell DJ, Riley J, Bergeron PW, Walter PJ (1992) Preliminary estimate of the cost of ethanol production for ssf technology. Appl Biochem Biotechnol 34(1):639–649

    Article  Google Scholar 

  • Holladay JE, Bozell JJ, White JF, Johnson D (2007) Top Value-added chemicals from biomass—volume II: results of screening for potential candidates from biorefinery lignin. PNNL report PNNL 16983

    Google Scholar 

  • Hosseini SA, Shah N (2009a) Multiscale modelling of biomass pretreatment for biofuels production. Chem Eng Res Des 87(9):1251–1260

    Article  Google Scholar 

  • Hosseini SA, Shah N (2009b) Multiscale modelling of hydrothermal biomass pretreatment for chip size optimization. Biores Technol 100(9):2621–2628

    Article  Google Scholar 

  • Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M, Sexton D, Dudgeon D (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol process design and economics for biochemical conversion of lignocellulosic biomass to ethanol. NREL report NREL/TP-5100-47764

    Google Scholar 

  • ICIS pricing http://www.icis.com/chemicals/channel-info-chemicals-a-z/

  • Karácsonyi S, Toman R, Janecek F, Kubacková M (1975) Polysaccharides from the bark of the white willow (Salix alba L.): structure of an arabian. Carbohydr Res 44(2):285–290

    Article  Google Scholar 

  • Kelloway A, Daoutidis P (2013) Process synthesis of biorefineries: optimization of biomass conversion to fuels and chemicals. Ind Eng Chem Res 53(13):5261–5273

    Article  Google Scholar 

  • Kim J, Sen SM, Maravelias CT (2013) An optimization-based assessment framework for biomass-to-fuel conversion strategies. Energy Environ Sci 6(4):1093–1104

    Article  Google Scholar 

  • Kumar D, Murthy G (2011) Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol Biofuels 4:27

    Article  Google Scholar 

  • Kumar R, Wyman CE (2008) The impact of dilute sulfuric acid on the selectivity of xylooligomer depolymerization to monomers. Carbohydr Res 343(2):290–300

    Article  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  Google Scholar 

  • Laine C (2005) Structures of hemicelluloses and pectins in wood and pulp. Helsinki University of Technology. http://lib.tkk.fi/Diss/2005/isbn9512276909/

  • Marcotullio G, de Jong W, Tavares Cardoso MA, Verkooijen AHM (2009) Bioenergy II: furfural destruction kinetics during sulphuric acid-catalyzed production from biomass. Int J Chem Reactor Eng 7(1):A67

    Article  Google Scholar 

  • Moreno MS, Andersen FE, Díaz MS (2013) Dynamic modeling and parameter estimation for unit operations in lignocellulosic bioethanol production. Ind Eng Chem Res 52(11):4146–4160

    Article  Google Scholar 

  • NREL Aspen Plus Models (2002) http://www.nrel.gov/extranet/biorefinery/aspen_models/File: E0602A.bkp

  • NREL Aspen Plus Models (2011) http://www.nrel.gov/extranet/biorefinery/aspen_models/File: DW1102A.bkp

  • NREL document 50149 http://www.nrel.gov/docs/gen/fy12/50149.pdf

  • NREL document 52503 http://www.nrel.gov/docs/fy12osti/52503.pdf

  • Patel AD, Serrano-Ruiz JC, Dumesic JA, Anex RP (2010) Techno-economic analysis of 5-nonanone production from levulinic acid. Chem Eng J 160(1):311–321

    Article  Google Scholar 

  • Peters M, Timmerhaus K, West R (2002) Plant design and economics for chemical engineers, 5th edn. McGraw-Hill Education, New York

    Google Scholar 

  • Prunescu RM, Blanke M, Jakobsen JG, Sin G (2015) Dynamic modeling and validation of a biomass hydrothermal pretreatment process-a demonstration scale study. AIChE J 61(12):4235–4250

    Article  Google Scholar 

  • Puls J (1997) Chemistry and biochemistry of hemicelluloses: relationship between hemicellulose structure and enzymes required for hydrolysis. Macromol Symp 120(1):183–196

    Article  Google Scholar 

  • Quintero JA, Cardona CA (2011) Process simulation of fuel ethanol production from lignocellulosics using Aspen Plus. Ind Eng Chem Res 50(10):6205–6212

    Article  Google Scholar 

  • Quintero JA, Montoya MI, Sanchez OJ, Giraldo OH, Cardona CA (2008) Fuel ethanol production from sugarcane and corn: comparative analysis for a Colombian case. Energy 33(3):385–399

    Article  Google Scholar 

  • Saeman JF (1945) Kinetics of wood saccharification: hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem 37(1):43–52

    Article  Google Scholar 

  • Seider WD, Seader JD, Lewin DR, Widagdo S (2009) Product and process design principles: synthesis, analysis and design, 3rd edn. Wiley, New York

    Google Scholar 

  • Sen SM, Henao CA, Braden DJ, Dumesic JA, Maravelias CT (2012) Catalytic conversion of lignocellulosic biomass to fuels: process development and technoeconomic evaluation. Chem Eng Sci 67(1):57–67

    Article  Google Scholar 

  • Tao L, Aden A, Elander RT, Pallapolu VR, Lee YY, Garlock RJ, Balan V, Dale BE, Kim Y, Mosier NS, Ladisch MR, Falls M, Holtzapple MT, Sierra R, Shi J, Ebrik MA, Redmond T, Yang B, Wyman CE, Hames B, Thomas S, Warner RE (2011) Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresour Technol 102(24):11105–11114

    Article  Google Scholar 

  • Torres AI, Stephanopoulos G (2016) Design of multi-actor distributed processing systems: a game-theoretical approach. AIChE J 62(9):3369–3391

    Article  Google Scholar 

  • Torres AI, Cybulska I, Fang CJ, Thomsen MH, Schmidt JE, Stephanopoulos G (2015) A novel approach for the identification of economic opportunities within the framework of a biorefinery. In: Gernaey K, Huusom J, Gani R (eds) 12th international symposium on process systems engineering 25th European symposium on computer aided process engineering. Copenhagen, Denmark, Elsevier B.V., pp 1175–1180

    Chapter  Google Scholar 

  • Towler G, Sinott R (2012) Chemical engineering design, principles, practice and economics of plant and process design, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Turton RA, Bailie RC, Whiting WB, Shaeiwitz JA, Bhattacharyya D (2008) Analysis, synthesis and design of chemical processes, 3rd edn. Prentice Hall, Upper Saddler River

    Google Scholar 

  • Williams DL, Dunlop AP (1948) Kinetics of furfural destruction in acidic aqueous media. Ind Eng Chem 40(2):239–261

    Article  Google Scholar 

  • Wooley RJ, Putsche V (1996) Development of an ASPEN PLUS physical property database for biofuels components. NREL report NREL/TP-425-20685

    Google Scholar 

  • Wyman CE, Decker SR, Himmel ME, Brady JW, Skopec CE, Viikari L (2004) Hydrolysis of cellulose and hemicellulose. In: Polysaccharides, pp 994–1033

    Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2(3):26–40

    Article  Google Scholar 

  • Yat SC, Berger A, Shonnard DR (2008) Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass. Biores Technol 99(9):3855–3863

    Article  Google Scholar 

  • Zhuang X, Yuan Z, Ma L, Wu C, Xu M, Xu J, Zhu S, Qi W (2009) Kinetic study of hydrolysis of xylan and agricultural wastes with hot liquid water. Biotechnol Adv 27(5):578–582

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the cooperative agreement between the Masdar Institute of Science and Technology (Masdar Institute), Abu Dhabi, UAE, and the Massachusetts Institute of Technology (MIT), Cambridge, MA, USA—Reference 02/MI/MI/CP/11/07633/GEN/G/00 for work under the second five-year agreement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ana I. Torres or George Stephanopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Torres, A.I., Ashraf, M.T., Chaturvedi, T., Schmidt, J.E., Stephanopoulos, G. (2017). Hydrothermal Pretreatment: Process Modeling and Economic Assessment Within the Framework of Biorefinery Processes. In: Ruiz, H., Hedegaard Thomsen, M., Trajano, H. (eds) Hydrothermal Processing in Biorefineries. Springer, Cham. https://doi.org/10.1007/978-3-319-56457-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56457-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56456-2

  • Online ISBN: 978-3-319-56457-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics