Skip to main content

Application of Histopathology and Bone Histomorphometry for Understanding Test Article-Related Bone Changes and Assessing Potential Bone Liabilities

  • Chapter
  • First Online:
Bone Toxicology

Abstract

Qualitative histopathology remains the gold standard for hazard identification and safety assessment of potential new therapeutics. Although, in most cases, qualitative histopathology has sufficient sensitivity to detect test article-related effects on bone marrow and growth plates in standard toxicity studies, it may lack the sensitivity to detect effects of test articles on key physiological processes in bone tissue such as bone formation, mineralization, and resorption, which often requires chronic dosing to result in structural changes, such as variation in bone mass, that can be appreciated by qualitative assessment. Bone histomorphometry is an important tool that provides sensitive methods that can detect effects of test articles on bone resorption, formation, mineralization, remodeling rates, and growth before structural changes occur. Bone histomorphometry can be used to understand the cellular mechanisms responsible for test article-related structural changes, detected by histopathology or imaging techniques, or can be used prospectively to address a potential target- or class-related theoretical bone liability. In this chapter we review the methods for embedding, sectioning, staining, and analysis of bone sections and provide some general guidance on approaches for the evaluation of bone and use of histomorphometric analyses applied to preclinical safety assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bagi CM, Berryman E, Moalli MR. Comparative bone anatomy of commonly used laboratory animals: implications for drug discovery. Comp Med. 2011;61:76–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonucci E, Ballanti P. Osteoporosis-bone remodeling and animal models. Toxicol Pathol. 2014;42:957–69.

    Article  CAS  PubMed  Google Scholar 

  • Boyce RW, Ebert DC, Youngs TA, Paddock CL, Mosekilde L, Stevens ML, et al. Unbiased estimation of vertebral trabecular connectivity in calcium-restricted ovariectomized minipigs. Bone. 1995a;16:637–42.

    Article  CAS  PubMed  Google Scholar 

  • Boyce RW, Paddock CL, Gleason JR, Sietsema WK, Eriksen EF. The effects of risedronate on canine cancellous bone remodeling: three-dimensional kinetic reconstruction of the remodeling site. J Bone Miner Res. 1995b;10:211–21.

    Article  CAS  PubMed  Google Scholar 

  • Boyce RW, Paddock CL, Franks AF, Jankowsky ML, Eriksen EF. Effects of intermittent hPTH(1-34) alone and in combination with 1,25(OH)2D3 or risedronate on endosteal bone remodeling in canine cancellous and cortical bone. J Bone Miner Res. 1996;11:600–13.

    Article  CAS  PubMed  Google Scholar 

  • Boyce RW, Dorph-Petersen KA, Lyck L, Gundersen HJ. Design-based stereology: introduction to basic concepts and practical approaches for estimation of cell number. Toxicol Pathol. 2010;38:1011–25.

    Article  PubMed  Google Scholar 

  • Boyce RW, Niu QT, Ominsky MS. Kinetic reconstruction reveals time-dependent effects of romosozumab on bone formation and osteoblast function in vertebral cancellous and cortical bone in cynomolgus monkeys. Bone. 2017;101:77–87.

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Orive LM, Weibel ER. Recent stereological methods for cell biology: a brief survey. Am J Phys. 1990;258:L148–56.

    CAS  Google Scholar 

  • Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 2013;28:2–17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Erben RG. Embedding of bone samples in methylmethacrylate: an improved method suitable for bone histomorphometry, histochemistry, and immunohistochemistry. J Histochem Cytochem. 1997;45:307–13.

    Article  CAS  PubMed  Google Scholar 

  • Erben RG. Bone labeling techniques. In: An YH, Martin KL, editors. Handbook of histology methods for bone and cartilage. Totowa: Humana Press; 2003. p. 99–117.

    Google Scholar 

  • Erben RG, Glosmann M. Histomorphometry in rodents. Methods Mol Biol. 2012;816:279–303.

    Article  CAS  PubMed  Google Scholar 

  • Eriksen EF. Normal and pathological remodeling of human trabecular bone: three dimensional reconstruction of the remodeling sequence in normals and in metabolic bone disease. Endocr Rev. 1986;7:379–408.

    Article  CAS  PubMed  Google Scholar 

  • Eriksen EF, Gundersen HJ, Melsen F, Mosekilde L. Reconstruction of the formative site in iliac trabecular bone in 20 normal individuals employing a kinetic model for matrix and mineral apposition. Metab Bone Dis Relat Res. 1984a;5:243–52.

    Article  CAS  PubMed  Google Scholar 

  • Eriksen EF, Melsen F, Mosekilde L. Reconstruction of the resorptive site in iliac trabecular bone: a kinetic model for bone resorption in 20 normal individuals. Metab Bone Dis Relat Res. 1984b;5:235–42.

    Article  CAS  PubMed  Google Scholar 

  • Eriksen EF, Langdahl B, Vesterby A, Rungby J, Kassem M. Hormone replacement therapy prevents osteoclastic hyperactivity: a histomorphometric study in early postmenopausal women. J Bone Miner Res. 1999;14:1217–21.

    Article  CAS  PubMed  Google Scholar 

  • Frost HM. Bone histomorphometry: analysis of trabecular bone dynamics. In: Recker RR, editor. Bone histomorphometry: techniques and interpretation. Boca Raton: CRC Press; 1983a. p. 109–31.

    Google Scholar 

  • Frost HM. Bone histomorphometry: choice of marking agent and labeling schedule. In: Recker RR, editor. Bone histomorphometry: techniques and interpretation. Boca Raton: CRC Press; 1983b. p. 37–52.

    Google Scholar 

  • Frost HM. Bone histomorphometry: correction of labeling ‘escape error’. In: Recker RR, editor. Bone histomorphometry: techniques and interpretation. Boca Raton: CRC Press; 1983c. p. 133–42.

    Google Scholar 

  • Hall AP, Westwood FR, Wadsworth PF. Review of the effects of anti-angiogenic compounds on the epiphyseal growth plate. Toxicol Pathol. 2006;34:131–47.

    Article  CAS  PubMed  Google Scholar 

  • Hansson LI, Menander-Sellman K, Stenstrom A, Thorngren KG. Rate of normal longitudinal bone growth in the rat. Calcif Tissue Res. 1972;10:238–51.

    Article  CAS  PubMed  Google Scholar 

  • High WB. Effects of orally administered prostaglandin E-2 on cortical bone turnover in adult dogs: a histomorphometric study. Bone. 1987;8:363–73.

    Article  CAS  PubMed  Google Scholar 

  • Howard CV, Reed MG. Unbiased stereology, three-dimensional measurements in microscopy. Abingdon: Garland Science/Bios Scientific Publishers; 2005.

    Google Scholar 

  • Kilborn SH, Trudel G, Uhthoff H. Review of growth plate closure compared with age at sexual maturity and lifespan in laboratory animals. Contemp Top Lab Anim Sci. 2002;41:21–6.

    CAS  PubMed  Google Scholar 

  • Muhlfeld C, Nyengaard JR, Mayhew TM. A review of state-of-the-art stereology for better quantitative 3D morphology in cardiac research. Cardiovasc Pathol. 2010;19:65–82.

    Article  PubMed  Google Scholar 

  • Nyengaard JR. Stereologic methods and their application in kidney research. J Am Soc Nephrol. 1999;10:1100–23.

    CAS  PubMed  Google Scholar 

  • Odgaard A, Gundersen HJG. Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone. 1993;14:173–82.

    Article  CAS  PubMed  Google Scholar 

  • Ominsky MS, Vlasseros F, Jolette J, Smith SY, Stouch B, Doellgast G, et al. Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res. 2010;25:948–59.

    Article  CAS  PubMed  Google Scholar 

  • Ominsky MS, Niu QT, Li C, Li X, Ke HZ. Tissue-level mechanisms responsible for the increase in bone formation and bone volume by sclerostin antibody. J Bone Miner Res. 2014;29:1424–30.

    Article  CAS  PubMed  Google Scholar 

  • Ominsky MS, Brown DL, Van G, Cordover D, Pacheco E, Frazier E, et al. Differential temporal effects of sclerostin antibody and parathyroid hormone on cancellous and cortical bone and quantitative differences in effects on the osteoblast lineage in young intact rats. Bone. 2015;81:380–91.

    Article  CAS  PubMed  Google Scholar 

  • Ominsky MS, Boyd SK, Varela A, Jolette J, Felx M, Doyle N, et al. Romosozumab improves bone mass and strength while maintaining bone quality in Ovariectomized Cynomolgus monkeys. J Bone Miner Res. 2016;32:788–801.

    Article  PubMed  Google Scholar 

  • Paddock C, Youngs T, Eriksen E, Boyce R. Validation of wall thickness estimates obtained with polarized light microscopy using multiple fluorochrome labels: correlation with erosion depth estimates obtained by lamellar counting. Bone. 1995;16:381–3.

    Article  CAS  PubMed  Google Scholar 

  • Parfitt AM. Stereologic basis of bone histomorphometry: theory of quantitative microscopy and reconstruction of the third dimension. In: Recker RR, editor. Bone histomorphometry: techniques and interpretation. Boca Raton: CRC Press; 1983. p. 53–87.

    Google Scholar 

  • Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest. 1983;72:1396–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 1987;2:595–610.

    Article  CAS  PubMed  Google Scholar 

  • Reim NS, Breig B, Stahr K, Eberle J, Hoeflich A, Wolf E, et al. Cortical bone loss in androgen-deficient aged male rats is mainly caused by increased endocortical bone remodeling. J Bone Miner Res. 2008;23:694–704.

    Article  CAS  PubMed  Google Scholar 

  • Roach HI, Mehta G, Oreffo RO, Clarke NM, Cooper C. Temporal analysis of rat growth plates: cessation of growth with age despite presence of a physis. J Histochem Cytochem. 2003;51:373–83.

    Article  CAS  PubMed  Google Scholar 

  • Schenk RK, Olah AJ, Herrmann W. Preparation of calcified tissues for light microscopy. In: Dickson GR, editor. Methods of calcified tissue preparation. Amsterdam: Elsevier; 1984. p. 1–56.

    Google Scholar 

  • Smith SY, Varela A, Jolette J. Nonhuman primate models of osteoporosis. In: Duque G, Watanabe K, editors. Osteoporosis research – animal models. London: Springer Verlag; 2011. p. 135–57.

    Google Scholar 

  • Steiniche T, Eriksen EF, Kudsk H, Mosekilde L, Melsen F. Reconstruction of the formative site in trabecular bone by a new, quick, and easy method. Bone. 1992;13:147–52.

    Article  CAS  PubMed  Google Scholar 

  • Sterchi DL, Callis GM. Staining techniques for undecalcified bone embedded in methylmethacrylate. National Society for Histotechnology Symposium, Philadelphia, Workshop No. 63; 1993.

    Google Scholar 

  • Storm T, Steiniche T, Thamsborg G, Melsen F. Changes in bone histomorphometry after long-term treatment with intermittent, cyclic etidronate for postmenopausal osteoporosis. J Bone Miner Res. 1993;8:199–208.

    Article  CAS  PubMed  Google Scholar 

  • Van Leeuwen BL, Hartel RM, Jansen HW, Kamps WA, Hoekstra HJ. The effect of chemotherapy on the morphology of the growth plate and metaphysis of the growing skeleton. Eur J Surg Oncol. 2003;29:49–58.

    Article  PubMed  Google Scholar 

  • Vesterby A. Star volume in bone research. A histomorphometric analysis of trabecular bone structure using vertical sections. Anat Rec. 1993;235:325–34.

    Article  CAS  PubMed  Google Scholar 

  • Weibel ER, Hsia CC, Ochs M. How much is there really? Why stereology is essential in lung morphometry. J Appl Physiol (1985). 2007;102:459–67.

    Article  Google Scholar 

  • Wessler S. Introduction: what is a model? In: Committee on animal models for thrombosis and hemorrhagic diseases, Institute of Laboratory Animal Resources, editor. Animal models of thrombosis and hemorrhagic diseases. Bethesda: National Institute of Health; 1976. p. xi–xvi.

    Google Scholar 

  • Wu S, Levenson A, Kharitonenkov A, De LF. Fibroblast growth factor 21 (FGF21) inhibits chondrocyte function and growth hormone action directly at the growth plate. J Biol Chem. 2012;287:26060–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhold G. Erben MD, DVM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Erben, R.G., Jolette, J., Chouinard, L., Boyce, R. (2017). Application of Histopathology and Bone Histomorphometry for Understanding Test Article-Related Bone Changes and Assessing Potential Bone Liabilities. In: Smith, S., Varela, A., Samadfam, R. (eds) Bone Toxicology. Molecular and Integrative Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-56192-9_8

Download citation

Publish with us

Policies and ethics