Skip to main content

Bone and the Central Nervous System

  • Chapter
  • First Online:
Bone Toxicology

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

The human skeleton is a miracle of engineering, combining both strength and light weight to provide mechanical support to withstand the force of gravity and to transfer muscle forces during movement. The brain is well established as a master regulator of homeostasis in peripheral tissues. The discovery of bone regulation by central nervous system represents a growing area of study that is identifying novel regulatory axes between the nervous system and bone homeostasis, and revealing a far more complex, and interdependent bone biology than previously envisioned. This chapter examines the current understanding of the central regulation of bone homeostasis. Herein, we will discuss the contribution of central peptides, and other peptides such as leptin, and semaphorins and involvement of the brain in regulation of bone metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed M, et al. Neuropeptide Y, tyrosine hydroxylase and vasoactive intestinal polypeptide-immunoreactive nerve fibers in the vertebral bodies, discs, dura mater, and spinal ligaments of the rat lumbar spine. Spine. 1993;18(2):268–73.

    Article  CAS  PubMed  Google Scholar 

  • Ahn JD, et al. Cart overexpression is the only identifiable cause of high bone mass in melanocortin 4 receptor deficiency. Endocrinology. 2006;147(7):3196–202.

    Article  CAS  PubMed  Google Scholar 

  • Baldock PA, et al. Hypothalamic Y2 receptors regulate bone formation. J Clin Invest. 2002;109(7):915–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldock PA, et al. Hypothalamic control of bone formation: distinct actions of leptin and y2 receptor pathways. J Bone Miner Res. 2005;20(10):1851–7.

    Article  CAS  PubMed  Google Scholar 

  • Baldock PA, et al. Hypothalamic regulation of cortical bone mass: opposing activity of Y2 receptor and leptin pathways. J Bone Miner Res. 2006;21(10):1600–7.

    Article  CAS  PubMed  Google Scholar 

  • Baldock PA, et al. Novel role of Y1 receptors in the coordinated regulation of bone and energy homeostasis. J Biol Chem. 2007;282(26):19092–102.

    Article  CAS  PubMed  Google Scholar 

  • Baskin DG, Breininger JF, Schwartz MW. Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus. Diabetes. 1999;48(4):828–33.

    Article  CAS  PubMed  Google Scholar 

  • Beltramo M, et al. Gene expression profiling of melanocortin system in neuropathic rats supports a role in nociception. Brain Res Mol Brain Res. 2003;118(1–2):111–8.

    Google Scholar 

  • Bjurholm A. Neuroendocrine peptides in bone. Int Orthop. 1991;15(4):325–9.

    Article  CAS  PubMed  Google Scholar 

  • Bjurholm A, et al. Neuropeptide Y-, tyrosine hydroxylase- and vasoactive intestinal polypeptide-immunoreactive nerves in bone and surrounding tissues. J Auton Nerv Syst. 1988;25(2–3):119–25.

    Article  CAS  PubMed  Google Scholar 

  • Bjurholm A, et al. Neuroendocrine regulation of cyclic AMP formation in osteoblastic cell lines (UMR-106-01, ROS 17/2.8, MC3T3-E1, and Saos-2) and primary bone cells. J Bone Miner Res. 1992;7(9):1011–9.

    Article  CAS  PubMed  Google Scholar 

  • Blomqvist AG, Herzog H. Y-receptor subtypes – how many more? Trends Neurosci. 1997;20(7):294–8.

    Article  CAS  PubMed  Google Scholar 

  • Broberger C, et al. Subtypes Y1 and Y2 of the neuropeptide Y receptor are respectively expressed in pro-opiomelanocortin- and neuropeptide-Y-containing neurons of the rat hypothalamic arcuate nucleus. Neuroendocrinology. 1997;66(6):393–408.

    Article  CAS  PubMed  Google Scholar 

  • Burger EH, Klein-Nulend J. Mechanotransduction in bone – role of the lacuno-canalicular network. FASEB J. 1999;13(12):S101–12.

    CAS  PubMed  Google Scholar 

  • Burger EH, et al. Function of osteocytes in bone – their role in mechanotransduction. J Nutr. 1995;125(7 Suppl):2020S–3S.

    CAS  PubMed  Google Scholar 

  • Burguera B, et al. Leptin reduces ovariectomy-induced bone loss in rats. Endocrinology. 2001;142(8):3546–53.

    Article  CAS  PubMed  Google Scholar 

  • Cornish J, et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol. 2002;175(2):405–15.

    Article  CAS  PubMed  Google Scholar 

  • Dacquin R, et al. Control of bone resorption by semaphorin 4D is dependent on ovarian function. PLoS One. 2011;6(10):26.

    Article  CAS  Google Scholar 

  • Denes A, et al. Central autonomic control of the bone marrow: multisynaptic tract tracing by recombinant pseudorabies virus. Neuroscience. 2005;134(3):947–63.

    Article  CAS  PubMed  Google Scholar 

  • Derijck AA, Van Erp S, Pasterkamp RJ. Semaphorin signaling: molecular switches at the midline. Trends Cell Biol. 2010;20(9):568–76.

    Article  CAS  PubMed  Google Scholar 

  • Devane WA, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258(5090):1946–9.

    Article  CAS  PubMed  Google Scholar 

  • Ducy P, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100(2):197–207.

    Article  CAS  PubMed  Google Scholar 

  • Ekblad E, Sundler F. Distribution of pancreatic polypeptide and peptide YY. Peptides. 2002;23(2):251–61.

    Article  CAS  PubMed  Google Scholar 

  • Elefteriou F. Neuronal signaling and the regulation of bone remodeling. Cell Mol Life Sci. 2005;62(19–20):2339–49.

    Article  CAS  PubMed  Google Scholar 

  • Elefteriou F, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032):514–20.

    Article  CAS  PubMed  Google Scholar 

  • Enjuanes A, et al. Leptin receptor (OB-R) gene expression in human primary osteoblasts: confirmation. J Bone Miner Res. 2002;17(6):1135.

    Article  CAS  PubMed  Google Scholar 

  • Erickson JC, Hollopeter G, Palmiter RD. Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science. 1996;274(5293):1704–7.

    Article  CAS  PubMed  Google Scholar 

  • Farooqi IS, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. New Engl J Med. 1999;341(12):879–84.

    Article  CAS  PubMed  Google Scholar 

  • Farooqi IS, et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest. 2000;106(2):271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395(6704):763–70.

    Article  CAS  PubMed  Google Scholar 

  • Fukuda T, et al. Sema3A regulates bone-mass accrual through sensory innervations. Nature. 2013;497(7450):490–3.

    Article  CAS  PubMed  Google Scholar 

  • Gordeladze JO, et al. Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: impact on differentiation markers, apoptosis, and osteoclastic signaling. J Cell Biochem. 2002;85(4):825–36.

    Article  CAS  PubMed  Google Scholar 

  • Goulding A, Taylor RW. Plasma leptin values in relation to bone mass and density and to dynamic biochemical markers of bone resorption and formation in postmenopausal women. Calcif Tissue Int. 1998;63(6):456–8.

    Article  CAS  PubMed  Google Scholar 

  • Halaas JL, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995;269(5223):543–6.

    Article  CAS  PubMed  Google Scholar 

  • Hamrick MW, et al. Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone. 2004;34(3):376–83.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, et al. Osteoprotection by semaphorin 3A. Nature. 2012;485(7396):69–74.

    Article  CAS  PubMed  Google Scholar 

  • Hill EL, Elde R. Distribution of CGRP-, VIP-, D beta H-, SP-, and NPY-immunoreactive nerves in the periosteum of the rat. Cell Tissue Res. 1991;264(3):469–80.

    Article  CAS  PubMed  Google Scholar 

  • Hoggard N, et al. Leptin and leptin receptor mRNA and protein expression in the murine fetus and placenta. Proc Natl Acad Sci U S A. 1997;94(20):11073–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hokfelt T, et al. Neuropeptide Y: some viewpoints on a multifaceted peptide in the normal and diseased nervous system. Brain Res Brain Res Rev. 1998;26(2–3):154–66.

    Article  CAS  PubMed  Google Scholar 

  • Holloway WR, et al. Leptin inhibits osteoclast generation. J Bone Miner Res. 2002;17(2):200–9.

    Article  CAS  PubMed  Google Scholar 

  • Howlett AC, et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev. 2002;54(2):161–202.

    Article  CAS  PubMed  Google Scholar 

  • Idris AI, et al. Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat Med. 2005;11(7):774–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igwe JC, et al. Neuropeptide Y is expressed by osteocytes and can inhibit osteoblastic activity. J Cell Biochem. 2009;108(3):621–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isales CM, Zaidi M, Blair HC. ACTH is a novel regulator of bone mass. Ann N Y Acad Sci. 2010;1192:110–6.

    Google Scholar 

  • Ishac EJ, et al. Inhibition of exocytotic noradrenaline release by presynaptic cannabinoid CB1 receptors on peripheral sympathetic nerves. Br J Pharmacol. 1996;118(8):2023–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang S, Kumanogoh A. Semaphorins in bone development, homeostasis, and disease. Semin Cell Dev Biol. 2013;24(3):163–71.

    Article  CAS  PubMed  Google Scholar 

  • Karsak M, et al. Cannabinoid receptor type 2 gene is associated with human osteoporosis. Hum Mol Genet. 2005;14(22):3389–96.

    Article  CAS  PubMed  Google Scholar 

  • Kellenberger S, et al. Formoterol and isoproterenol induce c-fos gene expression in osteoblast-like cells by activating beta2-adrenergic receptors. Bone. 1998;22(5):471–8.

    Article  CAS  PubMed  Google Scholar 

  • Kishi T, Elmquist JK. Body weight is regulated by the brain: a link between feeding and emotion. Mol Psychiatry. 2005;10(2):132–46.

    Article  CAS  PubMed  Google Scholar 

  • Kopp J, et al. Expression of the neuropeptide Y Y1 receptor in the CNS of rat and of wild-type and Y1 receptor knock-out mice. Focus on immunohistochemical localization. Neuroscience. 2002;111(3):443–532.

    Article  CAS  PubMed  Google Scholar 

  • Kristensen P, et al. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature. 1998;393(6680):72–6.

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, et al. Leptin receptor isoform expression in rat osteoblasts and their functional analysis. FEBS Lett. 2002;528(1–3):43–7.

    Article  CAS  PubMed  Google Scholar 

  • Lee NJ, et al. Critical role for Y1 receptors in mesenchymal progenitor cell differentiation and osteoblast activity. J Bone Miner Res. 2010;25(8):1736–47.

    Article  CAS  PubMed  Google Scholar 

  • Lee NJ, et al. Y2 and Y4 receptor signalling attenuates the skeletal response of central NPY. J Mol Neurosci. 2011a;43(2):123–31.

    Article  CAS  PubMed  Google Scholar 

  • Lee NJ, et al. Osteoblast specific Y1 receptor deletion enhances bone mass. Bone. 2011b;48(3):461–7.

    Article  CAS  PubMed  Google Scholar 

  • Lin S, et al. Compensatory changes in [125I]-PYY binding in Y receptor knockout mice suggest the potential existence of further Y receptor(s). Neuropeptides. 2005;39(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  • Lindblad BE, et al. Vasoconstrictive action of neuropeptide Y in bone. The porcine tibia perfused in vivo. Acta Orthop Scand. 1994;65(6):629–34.

    Article  CAS  PubMed  Google Scholar 

  • Lundberg JM, et al. Comparative immunohistochemical and biochemical analysis of pancreatic polypeptide-like peptides with special reference to presence of neuropeptide Y in central and peripheral neurons. J Neurosci. 1984;4(9):2376–86.

    CAS  PubMed  Google Scholar 

  • Mackie K. Signaling via CNS cannabinoid receptors. Mol Cell Endocrinol. 2008;286:S60–5.

    Google Scholar 

  • Maor G, et al. Leptin acts as a growth factor on the chondrocytes of skeletal growth centers. J Bone Miner Res. 2002;17(6):1034–43.

    Article  CAS  PubMed  Google Scholar 

  • Mathey J, et al. Bone mass in obese diabetic Zucker rats: influence of treadmill running. Calcif Tissue Int. 2002;70(4):305–11.

    Article  CAS  PubMed  Google Scholar 

  • Matic I, et al. Bone-specific overexpression of NPY modulates osteogenesis. J Musculoskelet Neuronal Interact. 2012;12(4):209–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mechoulam R, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50(1):83–90.

    Article  CAS  PubMed  Google Scholar 

  • Mercer JG, et al. Coexpression of leptin receptor and preproneuropeptide Y mRNA in arcuate nucleus of mouse hypothalamus. J Neuroendocrinol. 1996;8(10):733–5.

    Article  CAS  PubMed  Google Scholar 

  • Miller KK, et al. Preservation of neuroendocrine control of reproductive function despite severe undernutrition. J Clin Endocrinol Metab. 2004;89(9):4434–8.

    Article  CAS  PubMed  Google Scholar 

  • Moore RE, et al. Characterization of beta-adrenergic receptors on rat and human osteoblast-like cells and demonstration that beta-receptor agonists can stimulate bone resorption in organ culture. Bone Miner. 1993;23(3):301–15.

    Article  CAS  PubMed  Google Scholar 

  • Morris JL. Selective constriction of small cutaneous arteries by NPY matches distribution of NPY in sympathetic axons. Regul Pept. 1994;49(3):225–36.

    Article  CAS  PubMed  Google Scholar 

  • Morroni M, et al. In vivo leptin expression in cartilage and bone cells of growing rats and adult humans. J Anat. 2004;205(4):291–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima R, et al. Effects of leptin to cultured growth plate chondrocytes. Horm Res. 2003;60(2):91–8.

    CAS  PubMed  Google Scholar 

  • Naveilhan P, et al. Complementary and overlapping expression of Y1, Y2 and Y5 receptors in the developing and adult mouse nervous system. Neuroscience. 1998;87(1):289–302.

    Article  CAS  PubMed  Google Scholar 

  • Negishi-Koga T, Takayanagi H. Bone cell communication factors and Semaphorins. Bonekey Rep. 2012;1(183):183.

    Article  PubMed  PubMed Central  Google Scholar 

  • Negishi-Koga T, et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med. 2011;17(11):1473–80.

    Article  CAS  PubMed  Google Scholar 

  • Niederhoffer N, Schmid K, Szabo B. The peripheral sympathetic nervous system is the major target of cannabinoids in eliciting cardiovascular depression. Naunyn Schmiedeberg’s Arch Pharmacol. 2003;367(5):434–43.

    Article  CAS  Google Scholar 

  • Nijenhuis WA, Oosterom J, Adan RA. AgRP(83-132) acts as an inverse agonist on the human-melanocortin-4 receptor. Mol Endocrinol. 2001;15(1):164–71.

    CAS  PubMed  Google Scholar 

  • Odabasi E, et al. Plasma leptin concentrations in postmenopausal women with osteoporosis. Eur J Endocrinol. 2000;142(2):170–3.

    Article  CAS  PubMed  Google Scholar 

  • Ofek O, et al. Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc Natl Acad Sci U S A. 2006;103(3):696–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozata M, Ozdemir IC, Licinio J. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J Clin Endocrinol Metab. 1999;84(10):3686–95.

    Article  CAS  PubMed  Google Scholar 

  • Parker RM, Herzog H. Regional distribution of Y-receptor subtype mRNAs in rat brain. Eur J Neurosci. 1999;11(4):1431–48.

    Article  CAS  PubMed  Google Scholar 

  • Pasco JA, et al. Serum leptin levels are associated with bone mass in nonobese women. J Clin Endocrinol Metab. 2001;86(5):1884–7.

    CAS  PubMed  Google Scholar 

  • Pasco JA, et al. Beta-adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong Osteoporosis Study. J Bone Miner Res. 2004;19(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  • Pernow J, et al. Neuropeptide Y: presence in perivascular noradrenergic neurons and vasoconstrictor effects on skeletal muscle blood vessels in experimental animals and man. Regul Pept. 1987;19(5–6):313–24.

    Article  CAS  PubMed  Google Scholar 

  • Rauch F, et al. Does leptin have an effect on bone in adult women? Calcif Tissue Int. 1998;63(6):453–5.

    Article  CAS  PubMed  Google Scholar 

  • Reid IR. Relationships among body mass, its components, and bone. Bone. 2002;31(5):547–55.

    Article  CAS  PubMed  Google Scholar 

  • Rejnmark L, et al. Fracture risk in perimenopausal women treated with beta-blockers. Calcif Tissue Int. 2004;75(5):365–72.

    Article  CAS  PubMed  Google Scholar 

  • Reseland JE, et al. Leptin is expressed in and secreted from primary cultures of human osteoblasts and promotes bone mineralization. J Bone Miner Res. 2001;16(8):1426–33.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Carballo E, et al. p38alpha function in osteoblasts influences adipose tissue homeostasis. In: FASEB J Faseb. United States; 2015. p. 1414–25.

    Google Scholar 

  • Sainsbury A, et al. Synergistic effects of Y2 and Y4 receptors on adiposity and bone mass revealed in double knockout mice. Mol Cell Biol. 2003;23(15):5225–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato M, et al. Association between serum leptin concentrations and bone mineral density, and biochemical markers of bone turnover in adult men. J Clin Endocrinol Metab. 2001;86(11):5273–6.

    Article  CAS  PubMed  Google Scholar 

  • Schlienger RG, et al. Use of beta-blockers and risk of fractures. JAMA. 2004;292(11):1326–32.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MW, Dallman MF, Woods SC. Hypothalamic response to starvation: implications for the study of wasting disorders. Am J Phys. 1995;269(5 Pt 2):R949–57.

    CAS  Google Scholar 

  • Sisask G, et al. The development of autonomic innervation in bone and joints of the rat. J Auton Nerv Syst. 1996;59(1–2):27–33.

    Article  CAS  PubMed  Google Scholar 

  • Soyka LA, et al. The effects of anorexia nervosa on bone metabolism in female adolescents. J Clin Endocrinol Metab. 1999;84(12):4489–96.

    CAS  PubMed  Google Scholar 

  • Spanswick D, et al. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature. 1997;390(6659):521–5.

    Article  CAS  PubMed  Google Scholar 

  • Spiegelman BM, Flier JS. Adipogenesis and obesity: rounding out the big picture. Cell. 1996;87(3):377–89.

    Article  CAS  PubMed  Google Scholar 

  • Steppan CM, et al. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept. 2000;92(1–3):73–8.

    Article  CAS  PubMed  Google Scholar 

  • Sun L, et al. FSH directly regulates bone mass. Cell. 2006;125(2):247–60.

    Article  CAS  PubMed  Google Scholar 

  • Takaya K, et al. Molecular cloning of rat leptin receptor isoform complementary DNAs – identification of a missense mutation in Zucker fatty (fa/fa) rats. Biochem Biophys Res Commun. 1996;225(1):75–83.

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305–17.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T, et al. Adrenergic stimulation of osteoclastogenesis mediated by expression of osteoclast differentiation factor in MC3T3-E1 osteoblast-like cells. Biochem Pharmacol. 2000;61:5.

    Google Scholar 

  • Tam J, et al. The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling. FASEB J. 2008;22(1):285–94.

    Article  CAS  PubMed  Google Scholar 

  • Tartaglia LA, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell. 1995;83(7):1263–71.

    Article  CAS  PubMed  Google Scholar 

  • Thomas T, et al. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology. 1999;140(4):1360–8.

    Article  Google Scholar 

  • Thomas T, et al. Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women. Bone. 2001;29(2):114–20.

    Article  CAS  PubMed  Google Scholar 

  • Tran TS, Kolodkin AL, Bharadwaj R. Semaphorin regulation of cellular morphology. Annu Rev Cell Dev Biol. 2007;23:263–92.

    Article  CAS  PubMed  Google Scholar 

  • Ueno N, et al. Decreased food intake and body weight in pancreatic polypeptide-overexpressing mice. Gastroenterology. 1999;117(6):1427–32.

    Article  CAS  PubMed  Google Scholar 

  • Welt CK, et al. Recombinant human leptin in women with hypothalamic amenorrhea. New Engl J Med. 2004;351(10):987–97.

    Article  CAS  PubMed  Google Scholar 

  • Wettstein JG, Earley B, Junien JL. Central nervous system pharmacology of neuropeptide Y. Pharmacol Ther. 1995;65(3):397–414.

    Article  CAS  PubMed  Google Scholar 

  • Wilding JP, et al. Increased neuropeptide-Y messenger ribonucleic acid (mRNA) and decreased neurotensin mRNA in the hypothalamus of the obese (ob/ob) mouse. Endocrinology. 1993;132(5):1939–44.

    Article  CAS  PubMed  Google Scholar 

  • Wong IP, et al. Neuropeptide Y is a critical modulator of leptin’s regulation of cortical bone. J Bone Miner Res. 2013;28(4):886–98.

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Ando F, Shimokata H. Association of candidate gene polymorphisms with bone mineral density in community-dwelling Japanese women and men. Int J Mol Med. 2007;19(5):791–801.

    CAS  PubMed  Google Scholar 

  • Yan L, et al. Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell. 2007;130(2):247–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Baldock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kulkarni, R.N., Baldock, P.A. (2017). Bone and the Central Nervous System. In: Smith, S., Varela, A., Samadfam, R. (eds) Bone Toxicology. Molecular and Integrative Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-56192-9_13

Download citation

Publish with us

Policies and ethics