Skip to main content

UV-Induced Molecular Signaling Differences in Melanoma and Non-melanoma Skin Cancer

  • Chapter
  • First Online:
Ultraviolet Light in Human Health, Diseases and Environment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 996))

Abstract

There are three major types of skin cancer: melanoma, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). BCC and SCC are often referred to as non-melanoma skin cancer (NMSC). NMSCs are relatively non-lethal and curable by surgery, hence are not reportable in most cancer registries all over the world. Melanoma is the deadliest skin cancer. Its incidence rate (case number) is about 1/10th of that for NMSC, yet its death toll is ~8 fold higher than NMSC.

Melanomas arise from melanocytes which are normally located on the basement membrane with dendrites extending into the epidermal keratinocytes. A major known function of melanocytes is to produce pigments which are enclosed by lipid membrane (termed melanosomes) and distribute them into keratinocytes, thus give different shade of skin colors. BCCs arise from basal cells, which are a layer of cells located at the deepest part of epidermis. Basal cells are recently considered to be skin stem cells as they are constantly proliferating and generating keratinocytes which are continuously pushed to the surface and eventually become a dead layer of stratum corneum. Squamous cells are the keratinocytes which resembles fish scale shape, ie, those initiated from basal cells and differentiated into squamous cells. Both basal cells and squamous cells belong to keratinocytes, therefore sometimes BCC and SCC are termed keratinocyte cancer.

These three types of cancer share many characteristics, yet they are very different from etiology to progression. One shared characteristic of skin cancer is that, according to the current views, they all are caused by solar or artificial ultraviolet radiation (UVR). UVA and UVB from solar UVR are the major UV bands reaching the earth surface. Both UV types cause DNA damage and immune suppression which play crucial roles in skin carcinogenesis. UVB can be directly absorbed by DNA molecules and thus causes UV-signature DNA damages; UVA, on the other hand, may function through inducing cellular ROS which then causes oxidative DNA damages [1,2,3,4]. This chapter will discuss the molecular signaling differences of UVR in melanoma and NMSC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seebode C, Lehmann J, Emmert S (2016) Photocarcinogenesis and skin cancer prevention strategies. Anticancer Res 36(3):1371–1378

    CAS  PubMed  Google Scholar 

  2. Battie C, Verschoore M (2012) Cutaneous solar ultraviolet exposure and clinical aspects of photodamage. Indian J Dermatol Venereol Leprol 78(Suppl 1):S9–S14

    Article  PubMed  Google Scholar 

  3. Huang XX, Bernerd F, Halliday GM (2009) Ultraviolet A within sunlight induces mutations in the epidermal basal layer of engineered human skin. Am J Pathol 174(4):1534–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Karran P, Brem R (2016) Protein oxidation, UVA and human DNA repair. DNA Repair (Amst) 44:178–185

    Article  CAS  Google Scholar 

  5. Kumar R, Deep G, Agarwal R (2015) An Overview of Ultraviolet B Radiation-Induced Skin Cancer Chemoprevention by Silibinin. Curr Pharmacol Rep 1(3):206–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Afaq F et al (2007) Delphinidin, an anthocyanidin in pigmented fruits and vegetables, protects human HaCaT keratinocytes and mouse skin against UVB-mediated oxidative stress and apoptosis. J Invest Dermatol 127(1):222–232

    Article  CAS  PubMed  Google Scholar 

  7. Kim Y, He YY (2014) Ultraviolet radiation-induced non-melanoma skin cancer: regulation of DNA damage repair and inflammation. Genes Dis 1(2):188–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang L, Gong F (2016) The emerging role of deubiquitination in nucleotide excision repair. DNA Repair (Amst) 44:118–122

    Article  CAS  Google Scholar 

  9. Sugasawa K (2016) Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair. DNA Repair (Amst) 44:110–117

    Article  CAS  Google Scholar 

  10. Nishigori C et al (1996) The immune system in ultraviolet carcinogenesis. J Investig Dermatol Symp Proc 1(2):143–146

    CAS  PubMed  Google Scholar 

  11. Quinones JL, Demple B (2016) When DNA repair goes wrong: BER-generated DNA-protein crosslinks to oxidative lesions. DNA Repair (Amst) 44:103–109

    Article  CAS  Google Scholar 

  12. Suzuki T et al (1998) Misincorporation of 2′-deoxyoxanosine 5′-triphosphate by DNA polymerases and its implication for mutagenesis. Biochemistry 37(33):11592–11598

    Article  CAS  PubMed  Google Scholar 

  13. de Gruijl FR, van Kranen HJ, Mullenders LH (2001) UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. J Photochem Photobiol B 63(1–3):19–27

    Article  PubMed  Google Scholar 

  14. Norgauer J et al (2003) Xeroderma pigmentosum. Eur J Dermatol 13(1):4–9

    PubMed  Google Scholar 

  15. Ehrhart JC et al (2003) UVB-induced mutations in human key gatekeeper genes governing signalling pathways and consequences for skin tumourigenesis. Photochem Photobiol Sci 2(8):825–834

    Article  CAS  PubMed  Google Scholar 

  16. Besaratinia A et al (2011) Wavelength dependence of ultraviolet radiation-induced DNA damage as determined by laser irradiation suggests that cyclobutane pyrimidine dimers are the principal DNA lesions produced by terrestrial sunlight. FASEB J 25(9):3079–3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brash DE (2006) Roles of the transcription factor p53 in keratinocyte carcinomas. Br J Dermatol 154(Suppl 1):8–10

    Article  CAS  PubMed  Google Scholar 

  18. Giglia-Mari G, Sarasin A (2003) TP53 mutations in human skin cancers. Hum Mutat 21(3):217–228

    Article  CAS  PubMed  Google Scholar 

  19. Zhou X et al (1998) Heat shock transcription factor-1 regulates heat shock protein-72 expression in human keratinocytes exposed to ultraviolet B light. J Invest Dermatol 111(2):194–198

    Article  CAS  PubMed  Google Scholar 

  20. Kindas-Mugge I et al (2002) Characterization of proteins associated with heat shock protein hsp27 in the squamous cell carcinoma cell line A431. Cell Biol Int 26(1):109–116

    Article  PubMed  Google Scholar 

  21. Boukamp P (2005) Non-melanoma skin cancer: what drives tumor development and progression? Carcinogenesis 26(10):1657–1667

    Article  CAS  PubMed  Google Scholar 

  22. Bonilla X et al (2016) Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat Genet 48(4):398–406

    Article  CAS  PubMed  Google Scholar 

  23. Mizuno T et al (2006) Molecular basis of basal cell carcinogenesis in the atomic-bomb survivor population: p53 and PTCH gene alterations. Carcinogenesis 27(11):2286–2294

    Article  CAS  PubMed  Google Scholar 

  24. Denef N et al (2000) Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell 102(4):521–531

    Article  CAS  PubMed  Google Scholar 

  25. Rahnama F et al (2006) Inhibition of GLI1 gene activation by Patched1. Biochem J 394(Pt 1):19–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ming M et al (2011) PTEN positively regulates UVB-induced DNA damage repair. Cancer Res 71(15):5287–5295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ming M et al (2011) UVA induces lesions resembling seborrheic keratoses in mice with keratinocyte-specific PTEN downregulation. J Invest Dermatol 131(7):1583–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vaughan MB et al (2009) H-ras expression in immortalized keratinocytes produces an invasive epithelium in cultured skin equivalents. PLoS One 4(11):e7908

    Article  PubMed  PubMed Central  Google Scholar 

  29. Michaelsen SH, Larsen CG, von Buchwald C (2014) Human papillomavirus shows highly variable prevalence in esophageal squamous cell carcinoma and no significant correlation to p16INK4a overexpression: a systematic review. J Thorac Oncol 9(6):865–871

    Article  CAS  PubMed  Google Scholar 

  30. Conscience I et al (2006) P16 is overexpressed in cutaneous carcinomas located on sun-exposed areas. Eur J Dermatol 16(5):518–522

    CAS  PubMed  Google Scholar 

  31. Soufir N et al (1999) P16 UV mutations in human skin epithelial tumors. Oncogene 18(39):5477–5481

    Article  CAS  PubMed  Google Scholar 

  32. Filipowicz E et al (2002) Expression of CD95 (Fas) in sun-exposed human skin and cutaneous carcinomas. Cancer 94(3):814–819

    Article  CAS  PubMed  Google Scholar 

  33. de Gruijl F (2009) Protein kinase Cepsilon reveals importance of extrinsic apoptosis in preventing UV carcinogenesis. J Invest Dermatol 129(8):1853–1856

    Article  PubMed  Google Scholar 

  34. Petit-Frere C et al (1998) Induction of interleukin-6 production by ultraviolet radiation in normal human epidermal keratinocytes and in a human keratinocyte cell line is mediated by DNA damage. J Invest Dermatol 111(3):354–359

    Article  CAS  PubMed  Google Scholar 

  35. Bacci S, Alard P, Streilein JW (2001) Evidence that ultraviolet B radiation transiently inhibits emigration of Langerhans cells from exposed epidermis, thwarting contact hypersensitivity induction. Eur J Immunol 31(12):3588–3594

    Article  CAS  PubMed  Google Scholar 

  36. Nishisgori C (2015) Current concept of photocarcinogenesis. Photochem Photobiol Sci 14(9):1713–1721

    Article  CAS  PubMed  Google Scholar 

  37. Kasahara S, Wago H, Cooper EL (2002) Dissociation of innate and adaptive immunity by UVB irradiation. Int J Immunopathol Pharmacol 15(1):1–11

    Article  PubMed  Google Scholar 

  38. Boehm T et al (2012) VLR-based adaptive immunity. Annu Rev Immunol 30:203–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schmitt DA, Ullrich SE (2000) Exposure to ultraviolet radiation causes dendritic cells/macrophages to secrete immune-suppressive IL-12p40 homodimers. J Immunol 165(6):3162–3167

    Article  CAS  PubMed  Google Scholar 

  40. Miyauchi-Hashimoto H et al (2005) Ultraviolet radiation-induced impairment of tumor rejection is enhanced in xeroderma pigmentosum a gene-deficient mice. J Invest Dermatol 124(6):1313–1317

    Article  CAS  PubMed  Google Scholar 

  41. Hart PH, Grimbaldeston MA, Finlay-Jones JJ (2001) Sunlight, immunosuppression and skin cancer: role of histamine and mast cells. Clin Exp Pharmacol Physiol 28(1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  42. Athar M et al (2001) Ultraviolet B(UVB)-induced cox-2 expression in murine skin: an immunohistochemical study. Biochem Biophys Res Commun 280(4):1042–1047

    Article  CAS  PubMed  Google Scholar 

  43. Elmets CA, Ledet JJ, Athar M (2014) Cyclooxygenases: mediators of UV-induced skin cancer and potential targets for prevention. J Invest Dermatol 134(10):2497–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Soontrapa K et al (2011) Prostaglandin E2-prostaglandin E receptor subtype 4 (EP4) signaling mediates UV irradiation-induced systemic immunosuppression. Proc Natl Acad Sci U S A 108(16):6668–6673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Davies H et al (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954

    Article  CAS  PubMed  Google Scholar 

  46. Brose MS et al (2002) BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 62(23):6997–7000

    CAS  PubMed  Google Scholar 

  47. Curtin JA et al (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353(20):2135–2147

    Article  CAS  PubMed  Google Scholar 

  48. Omholt K et al (2003) NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression. Clin Cancer Res 9(17):6483–6488

    CAS  PubMed  Google Scholar 

  49. Pavey S et al (2004) Microarray expression profiling in melanoma reveals a BRAF mutation signature. Oncogene 23(23):4060–4067

    Article  CAS  PubMed  Google Scholar 

  50. Alexandrov LB et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cheng KC et al (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G----T and A----C substitutions. J Biol Chem 267(1):166–172

    CAS  PubMed  Google Scholar 

  52. Hodis E et al (2012) A landscape of driver mutations in melanoma. Cell 150(2):251–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Berger MF et al (2012) Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 485(7399):502–506

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee MKT, Sharma A, Czerniecki BJ (2010) It’s all in for the HER family in tumorigenesis. Expert Rev Vaccin 9(1):29–34

    Article  Google Scholar 

  55. Brockhoff G et al (2011) No evidence for ErbB4 gene amplification in malignant melanoma. Acta Derm Venereol 91(4):488–490

    Article  CAS  PubMed  Google Scholar 

  56. Mense SM et al (2015) PTEN inhibits PREX2-catalyzed activation of RAC1 to restrain tumor cell invasion. Sci Signal 8(370):ra32

    Article  PubMed  PubMed Central  Google Scholar 

  57. Barrows D et al (2015) p21-activated Kinases (PAKs) Mediate the Phosphorylation of PREX2 Protein to Initiate Feedback Inhibition of Rac1 GTPase. J Biol Chem 290(48):28915–28931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Graells J et al (2004) Overproduction of VEGF concomitantly expressed with its receptors promotes growth and survival of melanoma cells through MAPK and PI3K signaling. J Invest Dermatol 123(6):1151–1161

    Article  CAS  PubMed  Google Scholar 

  59. Paluncic J et al (2016) Roads to melanoma: key pathways and emerging players in melanoma progression and oncogenic signaling. Biochim Biophys Acta 1863(4):770–784

    Article  CAS  PubMed  Google Scholar 

  60. Fine B et al (2009) Activation of the PI3K pathway in cancer through inhibition of PTEN by exchange factor P-REX2a. Science 325(5945):1261–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Halaban R (2015) RAC1 and melanoma. Clin Ther 37(3):682–685

    Article  PubMed  Google Scholar 

  62. Krauthammer M et al (2012) Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet 44(9):1006–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mar VJ et al (2014) Clinical and pathological associations of the activating RAC1 P29S mutation in primary cutaneous melanoma. Pigment Cell Melanoma Res 27(6):1117–1125

    Article  CAS  PubMed  Google Scholar 

  64. Watson IR et al (2014) The RAC1 P29S hotspot mutation in melanoma confers resistance to pharmacological inhibition of RAF. Cancer Res 74(17):4845–4852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shibahara S et al (2001) Microphthalmia-associated transcription factor (MITF): multiplicity in structure, function, and regulation. J Investig Dermatol Symp Proc 6(1):99–104

    Article  CAS  PubMed  Google Scholar 

  66. Weilbaecher KN et al (2001) Linkage of M-CSF signaling to Mitf, TFE3, and the osteoclast defect in Mitf(mi/mi) mice. Mol Cell 8(4):749–758

    Article  CAS  PubMed  Google Scholar 

  67. Hemesath TJ et al (1998) MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature 391(6664):298–301

    Article  CAS  PubMed  Google Scholar 

  68. Liu F et al (2010) MiTF links Erk1/2 kinase and p21 CIP1/WAF1 activation after UVC radiation in normal human melanocytes and melanoma cells. Mol Cancer 9:214

    Article  PubMed  PubMed Central  Google Scholar 

  69. Garraway LA et al (2005) Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436(7047):117–122

    Article  CAS  PubMed  Google Scholar 

  70. King R et al (1999) Microphthalmia transcription factor. A sensitive and specific melanocyte marker for MelanomaDiagnosis. Am J Pathol 155(3):731–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wellbrock C, Arozarena I (2015) Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy. Pigment Cell Melanoma Res 28(4):390–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee B, Sandhu S, McArthur G (2015) Cell cycle control as a promising target in melanoma. Curr Opin Oncol 27(2):141–150

    Article  CAS  PubMed  Google Scholar 

  73. Kwong LN et al (2012) Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nat Med 18(10):1503–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Viros A et al (2014) Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53. Nature 511(7510):478–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Luo C et al (2013) Loss of ARF sensitizes transgenic BRAFV600E mice to UV-induced melanoma via suppression of XPC. Cancer Res 73(14):4337–4348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tsao H et al (2012) Melanoma: from mutations to medicine. Genes Dev 26(11):1131–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Krahn G et al (2001) UVB-induced decrease of p16/CDKN2A expression in skin cancer patients. Pigment Cell Res 14(3):201–205

    Article  CAS  PubMed  Google Scholar 

  78. Shannon JA et al (1999) Normal repair of ultraviolet radiation-induced DNA damage in familial melanoma without CDKN2A or CDK4 gene mutation. Melanoma Res 9(2):133–137

    Article  CAS  PubMed  Google Scholar 

  79. Fountain JW et al (1992) Homozygous deletions within human chromosome band 9p21 in melanoma. Proc Natl Acad Sci U S A 89(21):10557–10561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wadt KA et al (2015) Molecular characterization of melanoma cases in Denmark suspected of genetic predisposition. PLoS One 10(3):e0122662

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cust AE et al (2011) Melanoma risk for CDKN2A mutation carriers who are relatives of population-based case carriers in Australia and the UK. J Med Genet 48(4):266–272

    Article  CAS  PubMed  Google Scholar 

  82. Zuo L et al (1996) Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 12(1):97–99

    Article  CAS  PubMed  Google Scholar 

  83. Bastian BC (2014) The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. Annu Rev Pathol 9:239–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dankort D et al (2009) Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 41(5):544–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kripke ML (1974) Antigenicity of murine skin tumors induced by ultraviolet light. J Natl Cancer Inst 53(5):1333–1336

    Article  CAS  PubMed  Google Scholar 

  86. Ullrich SE (2005) Mechanisms underlying UV-induced immune suppression. Mutat Res 571(1–2):185–205

    Article  CAS  PubMed  Google Scholar 

  87. Muller HK et al (2008) Effect of UV radiation on the neonatal skin immune system - implications for melanoma. Photochem Photobiol 84(1):47–54

    Article  CAS  PubMed  Google Scholar 

  88. De Fabo EC, Noonan FP (1983) Mechanism of immune suppression by ultraviolet irradiation in vivo. I. Evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology. J Exp Med 158(1):84–98

    Article  PubMed  Google Scholar 

  89. Beissert S et al (2001) IL-12 prevents the inhibitory effects of cis-urocanic acid on tumor antigen presentation by Langerhans cells: implications for photocarcinogenesis. J Immunol 167(11):6232–6238

    Article  CAS  PubMed  Google Scholar 

  90. Damian DL et al (2008) UV radiation-induced immunosuppression is greater in men and prevented by topical nicotinamide. J Invest Dermatol 128(2):447–454

    Article  CAS  PubMed  Google Scholar 

  91. Kubica AW, Brewer JD (2012) Melanoma in immunosuppressed patients. Mayo Clin Proc 87(10):991–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Penn I (1996) Malignant melanoma in organ allograft recipients. Transplantation 61(2):274–278

    Article  CAS  PubMed  Google Scholar 

  93. Marionnet C et al (2003) Differential molecular profiling between skin carcinomas reveals four newly reported genes potentially implicated in squamous cell carcinoma development. Oncogene 22(22):3500–3505

    Article  CAS  PubMed  Google Scholar 

  94. Weinstein IB, Joe AK (2006) Mechanisms of disease: oncogene addiction--a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 3(8):448–457

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu-Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu-Smith, F., Jia, J., Zheng, Y. (2017). UV-Induced Molecular Signaling Differences in Melanoma and Non-melanoma Skin Cancer. In: Ahmad, S. (eds) Ultraviolet Light in Human Health, Diseases and Environment. Advances in Experimental Medicine and Biology, vol 996. Springer, Cham. https://doi.org/10.1007/978-3-319-56017-5_3

Download citation

Publish with us

Policies and ethics