Skip to main content

A NP-Complete Problem in Coding Theory with Application to Code Based Cryptography

  • Conference paper
  • First Online:
Codes, Cryptology and Information Security (C2SI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10194))

Abstract

It is easy to determine if a given code \(\mathcal {C}\) is a subcode of another known code \(\mathcal {D}\). For most of occurrences, it is easy to determine if two codes \(\mathcal {C}\) and \(\mathcal {D}\) are equivalent by permutation. In this paper, we show that determining if a code \(\mathcal {C}\) is equivalent to a subcode of \(\mathcal {D}\) is a NP-complete problem. We give also some arguments to show why this problem seems much harder to solve in practice than the Equivalence Punctured Code problem or the Punctured Code problem proposed by Wieschebrink [21]. For one application of this problem we propose an improvement of the three-pass identification scheme of Girault and discuss on its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barg, A.: Some new NP-complete coding problems. Problemy Peredachi Informatsii 30(3), 23–28 (1994). English translation in Probl. Inform. Trans. 30, 209–214, July–September 1994

    Google Scholar 

  2. Berger, T.P.: New perspectives for code-based public key cryptography. In: Codes and Lattices in Cryptography, CLC 2006, Darmstadt (2006)

    Google Scholar 

  3. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02384-2_6

    Chapter  Google Scholar 

  4. Berger, T.P., Loidreau, P.: How to mask the structure of codes for a cryptographic use. Des. Codes Crypt. 35, 63–79 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berlekamp, E., McEliece, R.J., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theor. 24(3), 384–386 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cayrel, P.L., Diagne, M.K., Gueye, C.T.: NP-completeness of the Coset weight problem for Quasi-dyadic codes. In: International Conference on Coding theory and Cryptography ICCC 2015, Alger, Algeria (2015)

    Google Scholar 

  7. Cayrel, P.-L., Véron, P., Yousfi Alaoui, S.M.: A zero-knowledge identification scheme based on the q-ary syndrome decoding problem. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19574-7_12

    Chapter  Google Scholar 

  8. Garey, E., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  9. Girault, M.: A (non-practical) three-pass identification protocol using coding theory. In: Seberry, J., Pieprzyk, J. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp. 265–272. Springer, Heidelberg (1990). doi:10.1007/BFb0030367

    Chapter  Google Scholar 

  10. Gaborit, P., Girault, M.: Lightweight code-based authentication and signature. In: ISIT (2007)

    Google Scholar 

  11. Harari, S.: A new authentication algorithm. In: Cohen, G., Wolfmann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 91–105. Springer, Heidelberg (1989). doi:10.1007/BFb0019849

    Chapter  Google Scholar 

  12. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Jet Propulsion Lab. DSN Progress Report, Technical report (1978)

    Google Scholar 

  13. Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05445-7_24

    Chapter  Google Scholar 

  14. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl. Control Inf. Theor. 15(2), 159–166 (1986)

    MathSciNet  MATH  Google Scholar 

  15. Petrank, E., Roth, R.M.: Is code equivalence easy to decide? IEEE Trans. Inf. Theory 43(5), 1602–1604 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sendrier, N.: Finding the permutation between equivalent codes: the support splitting algorithm. IEEE Trans. Inf. Theor. 46(4), 1193–1203 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sendrier, N., Simos, D.E.: The hardness of code equivalence over \(\mathbb{F}_q\) and its application to code-based cryptography. In: Proceeding of Post-Quantum Cryptography, 5th International Workshop PQcrupto 2013, Limoges, France (2013)

    Google Scholar 

  18. Sidel’nikov, V.M., Shestakov, S.O.: On cryptosystems based on generalized Reed-Solomon codes. Discrete Math. 4(3), 57–63 (1992)

    MATH  Google Scholar 

  19. Sendrier, N., Simos, D.E.: How easy is code equivalence over \(\mathbb{F}_q\)? In: Proceedings of the 8th International Workshop on Coding and Cryptography, WCC 2013 (2013, to appear). https://www.rocq.inria.fr/secret/PUBLICATIONS/codeq3.pdf. Preprint (2012)

  20. Vardy, A.: The intractability of computing the minimum distance of a code. IEEE Trans. Inf. Theor. 43(6), 1757–1766 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wieschebrink, C.: Two NP-complete problems in coding theory with an application in code based cryptography. In: Proceedings of IEEE ISIT 2006, Seattle, USA, pp. 1733–1737 (2006)

    Google Scholar 

  22. Wieschebrink, C.: An attack on a modified niederreiter encryption scheme. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 14–26. Springer, Heidelberg (2006). doi:10.1007/11745853_2

    Chapter  Google Scholar 

  23. Stern, J.: An alternative to the Fiat-Shamir protocol. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 173–180. Springer, Heidelberg (1990). doi:10.1007/3-540-46885-4_19

    Google Scholar 

  24. Véron, P.: Improved identification schemes based on error-correcting codes. Appl. Algebra Eng. Commun. Comput. 8(1), 57–69 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994). doi:10.1007/3-540-48329-2_2

    Google Scholar 

Download references

Acknowlegment

This work was carried out with financial support of CEA-MITIC for CBC project and financial support of the government of Senegal’s Ministry of Hight Education and Research for ISPQ project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Belo Klamti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Berger, T.P., Gueye, C.T., Klamti, J.B. (2017). A NP-Complete Problem in Coding Theory with Application to Code Based Cryptography. In: El Hajji, S., Nitaj, A., Souidi, E. (eds) Codes, Cryptology and Information Security. C2SI 2017. Lecture Notes in Computer Science(), vol 10194. Springer, Cham. https://doi.org/10.1007/978-3-319-55589-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55589-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55588-1

  • Online ISBN: 978-3-319-55589-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics