Skip to main content

Construct, Merge, Solve and Adapt Versus Large Neighborhood Search for Solving the Multi-dimensional Knapsack Problem: Which One Works Better When?

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10197))

Abstract

Both, Construct, Merge, Solve and Adapt (CMSA) and Large Neighborhood Search (LNS), are hybrid algorithms that are based on iteratively solving sub-instances of the original problem instances, if possible, to optimality. This is done by reducing the search space of the tackled problem instance in algorithm-specific ways which differ from one technique to the other. In this paper we provide first experimental evidence for the intuition that, conditioned by the way in which the search space is reduced, LNS should generally work better than CMSA in the context of problems in which solutions are rather large, and the opposite is the case for problems in which solutions are rather small. The size of a solution is hereby measured by the number of components of which the solution is composed, in comparison to the total number of solution components. Experiments are conducted in the context of the multi-dimensional knapsack problem.

This work was funded by project TIN2012-37930-C02-02 (Spanish Ministry for Economy and Competitiveness, FEDER funds from the European Union) and project SGR 2014-1034 (AGAUR, Generalitat de Catalunya). Evelia Lizárraga acknowledges funding from the Mexican National Council for Science and Technology (CONACYT, doctoral grant number 253787).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Talbi, E. (ed.): Hybrid Metaheuristics. Studies in Computational Intelligence, vol. 434. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  2. Blum, C., Raidl, G.R.: Hybrid Metaheuristics - Powerful Tools for Optimization. Springer, Heidelberg (2016)

    Google Scholar 

  3. Boschetti, M.A., Maniezzo, V., Roffilli, M., Bolufé Röhler, A.: Matheuristics: optimization, simulation and control. In: Blesa, M.J., Blum, C., Gaspero, L., Roli, A., Sampels, M., Schaerf, A. (eds.) HM 2009. LNCS, vol. 5818, pp. 171–177. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04918-7_13

    Chapter  Google Scholar 

  4. Pisinger, D., Ropke, S.: Large neighborhood search. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 399–419. Springer, New York (2010)

    Chapter  Google Scholar 

  5. Caserta, M., Voß, S.: A corridor method based hybrid algorithm for redundancy allocation. J. Heuristics 22(4), 405–429 (2016)

    Article  Google Scholar 

  6. Lalla-Ruiz, E., Voß, S.: POPMUSIC as a matheuristic for the berth allocation problem. Ann. Math. Artif. Intell. 76(1–2), 173–189 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fischetti, M., Lodi, A.: Local branching. Math. Program. 98(1), 23–47 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blum, C., Pinacho, P., López-Ibáñez, M., Lozano, J.A.: Construct, merge, solve & adapt: a new general algorithm for combinatorial optimization. Comput. Oper. Res. 68, 75–88 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130(3), 449–467 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem. Discret. Appl. Math. 49(1), 189–212 (1994)

    Google Scholar 

  11. Leung, S., Zhang, D., Zhou, C., Wu, T.: A hybrid simulated annealing metaheuristic algorithm for the two-dimensional knapsack problem. Comput. Oper. Res. 39(1), 64–73 (2012)

    Article  MATH  Google Scholar 

  12. Kong, X., Gao, L., Ouyang, H., Li, S.: Solving large-scale multidimensional knapsack problems with a new binary harmony search algorithm. Comput. Oper. Res. 63, 7–22 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hanafi, S., Freville, A.: An efficient tabu search approach for the 0–1 multidimensional knapsack problem. Eur. J. Oper. Res. 106(2–3), 659–675 (1998)

    Article  MATH  Google Scholar 

  14. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    Article  MathSciNet  Google Scholar 

  15. Blum, C., Blesa, M.J.: Construct, merge, solve and adapt: application to the repetition-free longest common subsequence problem. In: Chicano, F., Hu, B., García-Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 46–57. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30698-8_4

    Chapter  Google Scholar 

  16. Lizárraga, E., Blesa, M.J., Blum, C., Raidl, G.R.: Large neighborhood search for the most strings with few bad columns problem. Soft Comput. (2016, in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Blum .

Editor information

Editors and Affiliations

A Appendix: Tuning results

A Appendix: Tuning results

See Fig. 4.

Fig. 4.
figure 4

Tuning results.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lizárraga, E., Blesa, M.J., Blum, C. (2017). Construct, Merge, Solve and Adapt Versus Large Neighborhood Search for Solving the Multi-dimensional Knapsack Problem: Which One Works Better When?. In: Hu, B., López-Ibáñez, M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2017. Lecture Notes in Computer Science(), vol 10197. Springer, Cham. https://doi.org/10.1007/978-3-319-55453-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55453-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55452-5

  • Online ISBN: 978-3-319-55453-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics