Skip to main content

Mechanisms of Antiphospholipid Antibody-Mediated Thrombosis

  • Chapter
  • First Online:
Antiphospholipid Syndrome

Abstract

Antiphospholipid antibodies (aPL) are key elements responsible for thrombosis in antiphospholipid syndrome (APS) patients. Current evidence indicates that aPL have wide-ranging effects on vascular cells, coagulation factors, and regulators of the coagulation cascade that produce a procoagulant phenotype. However, the molecular mechanisms underlying these processes remain incompletely understood. Inflammation serves as a necessary link between the observed procoagulant phenotype and thrombus development, with the complement cascade, toll-like receptors, and cytokines playing key roles. In this chapter, we outline the mechanisms that contribute to thrombosis in APS. We also review the facets of this topic for which there is no consensus among experts in the field, for instance, the relative importance of various mechanisms in the precipitation of thrombosis. Finally, we outline ongoing studies, namely, those presented at the recent 15th International Congress on aPL and our vision of the future direction of APS thrombosis research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost JTH. 2006;4:295–306.

    Article  CAS  PubMed  Google Scholar 

  2. Bertolaccini ML, Amengual O, Andreoli L, et al. 14th International Congress on Antiphospholipid Antibodies Task Force. Report on antiphospholipid syndrome laboratory diagnostics and trends. Autoimmun Rev. 2014;13:917–30.

    Article  PubMed  Google Scholar 

  3. Boey ML, Colaco CB, Gharavi AE, Elkon KB, Loizou S, Hughes GR. Thrombosis in systemic lupus erythematosus: striking association with the presence of circulating lupus anticoagulant. Br Med J (Clin Res Ed). 1983;287:1021–3.

    Article  CAS  Google Scholar 

  4. Harris EN, Pierangeli SS. Primary, secondary, and catastrophic antiphospholipid syndrome: what's in a name? Semin Thromb Hemost. 2008;34:219–26.

    Article  PubMed  Google Scholar 

  5. Devreese KM. Antiphospholipid antibodies: evaluation of the thrombotic risk. Thromb Res. 2012;130(Suppl 1):S37–40.

    Article  PubMed  Google Scholar 

  6. Lockshin MD, Kim M, Laskin CA, et al. Prediction of adverse pregnancy outcome by the presence of lupus anticoagulant, but not anticardiolipin antibody, in patients with antiphospholipid antibodies. Arthritis Rheum. 2012;64:2311–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Willis R, Harris EN, Pierangeli SS. Pathogenesis of the antiphospholipid syndrome. Semin Thromb Hemost. 2012;38:305–21.

    Article  CAS  PubMed  Google Scholar 

  8. Boyce S, Eren E, Lwaleed BA, Kazmi RS. The activation of complement and its role in the pathogenesis of thromboembolism. Semin Thromb Hemost. 2015;41:665–72.

    Article  CAS  PubMed  Google Scholar 

  9. de Groot PG, Urbanus RT. Antiphospholipid syndrome – not a Noninflammatory disease. Semin Thromb Hemost. 2015;41:607–14.

    Article  PubMed  CAS  Google Scholar 

  10. Matevosyan K, Sarode R. Thrombosis, microangiopathies, and inflammation. Semin Thromb Hemost. 2015;41:556–62.

    Article  CAS  PubMed  Google Scholar 

  11. Cervera R, Serrano R, Pons-Estel GJ, et al. Morbidity and mortality in the antiphospholipid syndrome during a 10-year period: a multicentre prospective study of 1000 patients. Ann Rheum Dis. 2015;74:1011–8.

    Article  CAS  PubMed  Google Scholar 

  12. Majka DS, Liu K, Pope RM, et al. Antiphospholipid antibodies and sub-clinical atherosclerosis in the coronary artery risk development in young adults (CARDIA) cohort. Inflamm Res Off J Eur Histamine Res Soc [et al]. 2013;62:919–27.

    CAS  Google Scholar 

  13. Ballocca F, D’Ascenzo F, Moretti C, et al. Predictors of cardiovascular events in patients with systemic lupus erythematosus (SLE): a systematic review and meta-analysis. Eur J Prev Cardiol. 2015;22:1435–41.

    Article  PubMed  Google Scholar 

  14. Ridker PM, Danielson E, Fonseca FA, et al. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. Lancet. 2009;373:1175–82.

    Article  CAS  PubMed  Google Scholar 

  15. Meroni PL, Riboldi P. Pathogenic mechanisms mediating antiphospholipid syndrome. Curr Opin Rheumatol. 2001;13:377–82.

    Article  CAS  PubMed  Google Scholar 

  16. Du VX, Kelchtermans H, de Groot PG, de Laat B. From antibody to clinical phenotype, the black box of the antiphospholipid syndrome: pathogenic mechanisms of the antiphospholipid syndrome. Thromb Res. 2013;132:319–26.

    Article  CAS  PubMed  Google Scholar 

  17. Reynaud Q, Lega JC, Mismetti P, et al. Risk of venous and arterial thrombosis according to type of antiphospholipid antibodies in adults without systemic lupus erythematosus: a systematic review and meta-analysis. Autoimmun Rev. 2014;13:595–608.

    Article  CAS  PubMed  Google Scholar 

  18. Escalante A, Brey RL, Mitchell Jr BD, Dreiner U. Accuracy of anticardiolipin antibodies in identifying a history of thrombosis among patients with systemic lupus erythematosus. Am J Med. 1995;98:559–65.

    Article  CAS  PubMed  Google Scholar 

  19. Ginsburg KS, Liang MH, Newcomer L, et al. Anticardiolipin antibodies and the risk for ischemic stroke and venous thrombosis. Ann Intern Med. 1992;117:997–1002.

    Article  CAS  PubMed  Google Scholar 

  20. Andreoli L, Chighizola CB, Banzato A, Pons-Estel GJ. Ramire de Jesus G, Erkan D. Estimated frequency of antiphospholipid antibodies in patients with pregnancy morbidity, stroke, myocardial infarction, and deep vein thrombosis: a critical review of the literature. Arthritis Care Res. 2013;65:1869–73.

    Article  CAS  Google Scholar 

  21. Sciascia S, Sanna G, Khamashta MA, et al. The estimated frequency of antiphospholipid antibodies in young adults with cerebrovascular events: a systematic review. Ann Rheum Dis. 2015;74:2028–33.

    Google Scholar 

  22. Wahl DG, Guillemin F, de Maistre E, Perret C, Lecompte T, Thibaut G. Risk for venous thrombosis related to antiphospholipid antibodies in systemic lupus erythematosus – a meta-analysis. Lupus. 1997;6:467–73.

    Article  CAS  PubMed  Google Scholar 

  23. Wahl DG, Guillemin F, de Maistre E, Perret-Guillaume C, Lecompte T, Thibaut G. Meta-analysis of the risk of venous thrombosis in individuals with antiphospholipid antibodies without underlying autoimmune disease or previous thrombosis. Lupus. 1998;7:15–22.

    Article  CAS  PubMed  Google Scholar 

  24. Pierangeli SS, Barker JH, Stikovac D, et al. Effect of human IgG antiphospholipid antibodies on an in vivo thrombosis model in mice. Thromb Haemost. 1994;71:670–4.

    CAS  PubMed  Google Scholar 

  25. Pierangeli SS, Liu XW, Barker JH, Anderson G, Harris EN. Induction of thrombosis in a mouse model by IgG, IgM and IgA immunoglobulins from patients with the antiphospholipid syndrome. Thromb Haemost. 1995;74:1361–7.

    CAS  PubMed  Google Scholar 

  26. Pierangeli SS, Colden-Stanfield M, Liu X, et al. Antiphospholipid antibodies from antiphospholipid syndrome patients activate endothelial cells in vitro and in vivo. Circulation. 1999;99:1997–2002.

    Google Scholar 

  27. Pierangeli SS, Vega-Ostertag ME, Raschi E, et al. Toll-like receptor and antiphospholipid mediated thrombosis: in vivo studies. Ann Rheum Dis. 2007;66:1327–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Forastiero R, Martinuzzo M, de Larranaga G, Vega-Ostertag M, Pierangeli S. Anti-beta2glycoprotein I antibodies from leprosy patients do not show thrombogenic effects in an in vivo animal model. J Thromb Haemost JTH. 2011;9:859–61.

    Article  CAS  PubMed  Google Scholar 

  29. Pericleous C, Ruiz-Limon P, Romay-Penabad Z, et al. Proof-of-concept study demonstrating the pathogenicity of affinity-purified IgG antibodies directed to domain I of beta2-glycoprotein I in a mouse model of anti-phospholipid antibody-induced thrombosis. Rheumatology (Oxford, England). 2015;54:722–7.

    Article  Google Scholar 

  30. Edwards MH, Pierangeli S, Liu X, Barker JH, Anderson G, Harris EN. Hydroxychloroquine reverses thrombogenic properties of antiphospholipid antibodies in mice. Circulation. 1997;96:4380–4.

    Article  CAS  PubMed  Google Scholar 

  31. Pierangeli SS, Espinola RG, Liu X, Harris EN. Thrombogenic effects of antiphospholipid antibodies are mediated by intercellular cell adhesion molecule-1, vascular cell adhesion molecule-1, and P-selectin. Circ Res. 2001;88:245–50.

    Article  CAS  PubMed  Google Scholar 

  32. Ferrara DE, Liu X, Espinola RG, et al. Inhibition of the thrombogenic and inflammatory properties of antiphospholipid antibodies by fluvastatin in an in vivo animal model. Arthritis Rheum. 2003;48:3272–9.

    Article  CAS  PubMed  Google Scholar 

  33. Pierangeli SS, Girardi G, Vega-Ostertag M, Liu X, Espinola RG, Salmon J. Requirement of activation of complement C3 and C5 for antiphospholipid antibody-mediated thrombophilia. Arthritis Rheum. 2005;52:2120–4.

    Article  CAS  PubMed  Google Scholar 

  34. Ostertag MV, Liu X, Henderson V, Pierangeli SS. A peptide that mimics the Vth region of beta-2-glycoprotein I reverses antiphospholipid-mediated thrombosis in mice. Lupus. 2006;15:358–65.

    Article  CAS  PubMed  Google Scholar 

  35. Montiel-Manzano G, Romay-Penabad Z, Papalardo de Martinez E, et al. In vivo effects of an inhibitor of nuclear factor-kappa B on thrombogenic properties of antiphospholipid antibodies. Ann N Y Acad Sci 2007;1108:540–53.

    Google Scholar 

  36. Ioannou Y, Romay-Penabad Z, Pericleous C, et al. In vivo inhibition of antiphospholipid antibody-induced pathogenicity utilizing the antigenic target peptide domain I of beta2-glycoprotein I: proof of concept. J Thromb Haemost JTH. 2009;7:833–42.

    Article  CAS  PubMed  Google Scholar 

  37. Romay-Penabad Z, Carrera Marin AL, et al. Complement C5-inhibitor rEV576 (coversin) ameliorates in-vivo effects of antiphospholipid antibodies. Lupus. 2014;23:1324–6.

    Article  CAS  PubMed  Google Scholar 

  38. Espinola RG, Liu X, Colden-Stanfield M, Hall J, Harris EN, Pierangeli SS. E-selectin mediates pathogenic effects of antiphospholipid antibodies. J Thromb Haemost JTH. 2003;1:843–8.

    Article  CAS  PubMed  Google Scholar 

  39. Romay-Penabad Z, Liu XX, Montiel-Manzano G, Papalardo De Martinez E, Pierangeli SS. C5a receptor-deficient mice are protected from thrombophilia and endothelial cell activation induced by some antiphospholipid antibodies. Ann N Y Acad Sci. 2007;1108:554–66.

    Google Scholar 

  40. Romay-Penabad Z, Montiel-Manzano MG, Shilagard T, et al. Annexin A2 is involved in antiphospholipid antibody-mediated pathogenic effects in vitro and in vivo. Blood. 2009;114:3074–83.

    Article  CAS  PubMed  Google Scholar 

  41. Romay-Penabad Z, Aguilar-Valenzuela R, Urbanus RT, et al. Apolipoprotein E receptor 2 is involved in the thrombotic complications in a murine model of the antiphospholipid syndrome. Blood. 2011;117:1408–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Carrera-Marin A, Romay-Penabad Z, Papalardo E, et al. C6 knock-out mice are protected from thrombophilia mediated by antiphospholipid antibodies. Lupus. 2012;21:1497–505.

    Article  PubMed  CAS  Google Scholar 

  43. Jankowski M, Vreys I, Wittevrongel C, et al. Thrombogenicity of beta 2-glycoprotein I-dependent antiphospholipid antibodies in a photochemically induced thrombosis model in the hamster. Blood. 2003;101:157–62.

    Article  CAS  PubMed  Google Scholar 

  44. Fischetti F, Durigutto P, Pellis V, et al. Thrombus formation induced by antibodies to beta2-glycoprotein I is complement dependent and requires a priming factor. Blood. 2005;106:2340–6.

    Article  CAS  PubMed  Google Scholar 

  45. Agostinis C, Durigutto P, Sblattero D, et al. A non-complement-fixing antibody to beta2 glycoprotein I as a novel therapy for antiphospholipid syndrome. Blood. 2014;123:3478–87.

    Article  CAS  PubMed  Google Scholar 

  46. Arad A, Proulle V, Furie RA, Furie BC, Furie B. beta(2)-glycoprotein-1 autoantibodies from patients with antiphospholipid syndrome are sufficient to potentiate arterial thrombus formation in a mouse model. Blood. 2011;117:3453–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Proulle V, Furie RA, Merrill-Skoloff G, Furie BC, Furie B. Platelets are required for enhanced activation of the endothelium and fibrinogen in a mouse thrombosis model of APS. Blood. 2014;124:611–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kolyada A, Porter A, Beglova N. Inhibition of thrombotic properties of persistent autoimmune anti-beta2GPI antibodies in the mouse model of antiphospholipid syndrome. Blood. 2014;123:1090–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ramesh S, Morrell CN, Tarango C, et al. Antiphospholipid antibodies promote leukocyte-endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via beta2GPI and apoER2. J Clin Invest. 2011;121:120–31.

    Article  CAS  PubMed  Google Scholar 

  50. Nishimura M, Nii T, Trimova G, Miura S, et al. The NF-kappaB specific inhibitor DHMEQ prevents thrombus formation in a mouse model of antiphospholipid syndrome. J Nephropathol. 2013;2:114–21.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Laplante P, Fuentes R, Salem D, et al. Antiphospholipid antibody-mediated effects in an arterial model of thrombosis are dependent on toll-like receptor 4. Lupus. 2016;25:162–76.

    Article  CAS  PubMed  Google Scholar 

  52. Xie H, Kong X, Zhou H, et al. TLR4 is involved in the pathogenic effects observed in a murine model of antiphospholipid syndrome. Clin Immunol (Orlando, Fla). 2015;160:198–210.

    Article  CAS  Google Scholar 

  53. Manukyan D, Muller-Calleja N, Jackel S, et al. Cofactor-independent human antiphospholipid antibodies induce venous thrombosis in mice. J Thromb Haemost JTH. 2016;14:1011–20.

    Article  CAS  PubMed  Google Scholar 

  54. Meng H, Yalavarthi S, Kanthi Y, et al. In vivo role of neutrophil extracellular traps in antiphospholipid antibody-mediated venous thrombosis. Arthritis Rheumatol (Hoboken, NJ). 2017;69:655–67.

    Google Scholar 

  55. Harris EN, Asherson RA, Gharavi AE, Morgan SH, Derue G, Hughes GR. Thrombocytopenia in SLE and related autoimmune disorders: association with anticardiolipin antibody. Br J Haematol. 1985;59:227–30.

    Article  CAS  PubMed  Google Scholar 

  56. Lellouche F, Martinuzzo M, Said P, Maclouf J, Carreras LO. Imbalance of thromboxane/prostacyclin biosynthesis in patients with lupus anticoagulant. Blood. 1991;78:2894–9.

    CAS  PubMed  Google Scholar 

  57. Espinola RG, Pierangeli SS, Gharavi AE, Harris EN. Hydroxychloroquine reverses platelet activation induced by human IgG antiphospholipid antibodies. Thromb Haemost. 2002;87:518–22.

    CAS  PubMed  Google Scholar 

  58. Pierangeli SS, Vega-Ostertag M, Harris EN. Intracellular signaling triggered by antiphospholipid antibodies in platelets and endothelial cells: a pathway to targeted therapies. Thromb Res. 2004;114:467–76.

    Article  CAS  PubMed  Google Scholar 

  59. McEver RP. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc Res. 2015;107:331–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Williams FM, Parmar K, Hughes GR, Hunt BJ. Systemic endothelial cell markers in primary antiphospholipid syndrome. Thromb Haemost. 2000;84:742–6.

    CAS  PubMed  Google Scholar 

  61. Canaud G, Bienaime F, Tabarin F, et al. Inhibition of the mTORC pathway in the antiphospholipid syndrome. N Engl J Med. 2014;371:303–12.

    Article  PubMed  CAS  Google Scholar 

  62. Dignat-George F, Camoin-Jau L, Sabatier F, et al. Endothelial microparticles: a potential contribution to the thrombotic complications of the antiphospholipid syndrome. Thromb Haemost. 2004;91:667–73.

    CAS  PubMed  Google Scholar 

  63. Chaturvedi S, Cockrell E, Espinola R, et al. Circulating microparticles in patients with antiphospholipid antibodies: characterization and associations. Thromb Res. 2015;135:102–8.

    Article  CAS  PubMed  Google Scholar 

  64. Simantov R, LaSala JM, Lo SK, et al. Activation of cultured vascular endothelial cells by antiphospholipid antibodies. J Clin Invest. 1995;96:2211–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Del Papa N, Guidali L, Sala A, et al. Endothelial cells as target for antiphospholipid antibodies. Human polyclonal and monoclonal anti-beta 2-glycoprotein I antibodies react in vitro with endothelial cells through adherent beta 2-glycoprotein I and induce endothelial activation. Arthritis Rheum. 1997;40:551–61.

    Article  PubMed  Google Scholar 

  66. Vega-Ostertag M, Casper K, Swerlick R, Ferrara D, Harris EN, Pierangeli SS. Involvement of p38 MAPK in the up-regulation of tissue factor on endothelial cells by antiphospholipid antibodies. Arthritis Rheum. 2005;52:1545–54.

    Article  CAS  PubMed  Google Scholar 

  67. Dunoyer-Geindre S, de Moerloose P, Galve-de Rochemonteix B, Reber G, Kruithof EK. NFkappaB is an essential intermediate in the activation of endothelial cells by anti-beta(2)-glycoprotein 1 antibodies. Thromb Haemost. 2002;88:851–7.

    PubMed  Google Scholar 

  68. Sorice M, Longo A, Capozzi A, et al. Anti-beta2-glycoprotein I antibodies induce monocyte release of tumor necrosis factor alpha and tissue factor by signal transduction pathways involving lipid rafts. Arthritis Rheum. 2007;56:2687–97.

    Article  CAS  PubMed  Google Scholar 

  69. von Bruhl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209:819–35.

    Article  CAS  Google Scholar 

  70. Martini F, Farsi A, Gori AM, et al. Antiphospholipid antibodies (aPL) increase the potential monocyte procoagulant activity in patients with systemic lupus erythematosus. Lupus. 1996;5:206–11.

    Article  CAS  PubMed  Google Scholar 

  71. Cuadrado MJ, Lopez-Pedrera C, Khamashta MA, et al. Thrombosis in primary antiphospholipid syndrome: a pivotal role for monocyte tissue factor expression. Arthritis Rheum. 1997;40:834–41.

    Article  CAS  PubMed  Google Scholar 

  72. Dobado-Berrios PM, Lopez-Pedrera C, Velasco F, Aguirre MA, Torres A, Cuadrado MJ. Increased levels of tissue factor mRNA in mononuclear blood cells of patients with primary antiphospholipid syndrome. Thromb Haemost. 1999;82:1578–82.

    CAS  PubMed  Google Scholar 

  73. Lopez-Pedrera C, Buendia P, Cuadrado MJ, et al. Antiphospholipid antibodies from patients with the antiphospholipid syndrome induce monocyte tissue factor expression through the simultaneous activation of NF-kappaB/Rel proteins via the p38 mitogen-activated protein kinase pathway, and of the MEK-1/ERK pathway. Arthritis Rheum. 2006;54:301–11.

    Article  CAS  PubMed  Google Scholar 

  74. Cuadrado MJ, Buendia P, Velasco F, et al. Vascular endothelial growth factor expression in monocytes from patients with primary antiphospholipid syndrome. J Thromb Haemost JTH. 2006;4:2461–9.

    Article  CAS  PubMed  Google Scholar 

  75. Bernales I, Fullaondo A, Marin-Vidalled MJ, et al. Innate immune response gene expression profiles characterize primary antiphospholipid syndrome. Genes Immun. 2008;9:38–46.

    Article  CAS  PubMed  Google Scholar 

  76. Perez-Sanchez C, Barbarroja N, Messineo S, et al. Gene profiling reveals specific molecular pathways in the pathogenesis of atherosclerosis and cardiovascular disease in antiphospholipid syndrome, systemic lupus erythematosus and antiphospholipid syndrome with lupus. Ann Rheum Dis. 2015;74:1441–9.

    Article  CAS  PubMed  Google Scholar 

  77. Lopez-Pedrera C, Aguirre MA, Buendia P, et al. Differential expression of protease-activated receptors in monocytes from patients with primary antiphospholipid syndrome. Arthritis Rheum. 2010;62:869–77.

    Article  CAS  PubMed  Google Scholar 

  78. Nagahama M, Nomura S, Kanazawa S, Ozaki Y, Kagawa H, Fukuhara S. Significance of anti-oxidized LDL antibody and monocyte-derived microparticles in anti-phospholipid antibody syndrome. Autoimmunity. 2003;36:125–31.

    Article  CAS  PubMed  Google Scholar 

  79. Vikerfors A, Mobarrez F, Bremme K, et al. Studies of microparticles in patients with the antiphospholipid syndrome (APS). Lupus. 2012;21:802–5.

    Article  CAS  PubMed  Google Scholar 

  80. Kornberg A, Blank M, Kaufman S, Shoenfeld Y. Induction of tissue factor-like activity in monocytes by anti-cardiolipin antibodies. J Immunol (Baltimore, Md: 1950). 1994;153:1328–32.

    CAS  Google Scholar 

  81. Amengual O, Atsumi T, Khamashta MA, Hughes GR. The role of the tissue factor pathway in the hypercoagulable state in patients with the antiphospholipid syndrome. Thromb Haemost. 1998;79:276–81.

    CAS  PubMed  Google Scholar 

  82. Reverter JC, Tassies D, Font J, et al. Effects of human monoclonal anticardiolipin antibodies on platelet function and on tissue factor expression on monocytes. Arthritis Rheum. 1998;41:1420–7.

    Article  CAS  PubMed  Google Scholar 

  83. Zhou H, Wolberg AS, Roubey RA. Characterization of monocyte tissue factor activity induced by IgG antiphospholipid antibodies and inhibition by dilazep. Blood. 2004;104:2353–8.

    Article  CAS  PubMed  Google Scholar 

  84. Xie H, Zhou H, Wang H, et al. Anti-beta(2)GPI/beta(2)GPI induced TF and TNF-alpha expression in monocytes involving both TLR4/MyD88 and TLR4/TRIF signaling pathways. Mol Immunol. 2013;53:246–54.

    Article  CAS  PubMed  Google Scholar 

  85. Muller-Calleja N, Kohler A, Siebald B, et al. Cofactor-independent antiphospholipid antibodies activate the NLRP3-inflammasome via endosomal NADPH-oxidase: implications for the antiphospholipid syndrome. Thromb Haemost. 2015;113:1071–83.

    Article  PubMed  Google Scholar 

  86. Borissoff JI, Joosen IA, Versteylen MO, et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol. 2013;33:2032–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. de Boer OJ, Li X, Teeling P, Mackaay C, et al. Neutrophils, neutrophil extracellular traps and interleukin-17 associate with the organisation of thrombi in acute myocardial infarction. Thromb Haemost. 2013;109:290–7.

    Article  PubMed  CAS  Google Scholar 

  88. Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107:15880–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mikes B, Sinkovits G, Farkas P, et al. Elevated plasma neutrophil elastase concentration is associated with disease activity in patients with thrombotic thrombocytopenic purpura. Thromb Res. 2014;133:616–21.

    Article  CAS  PubMed  Google Scholar 

  90. Jimenez-Alcazar M, Napirei M, Panda R, et al. Impaired DNase1-mediated degradation of neutrophil extracellular traps is associated with acute thrombotic microangiopathies. J Thromb Haemost JTH. 2015;13:732–42.

    Article  CAS  PubMed  Google Scholar 

  91. Arvieux J, Jacob MC, Roussel B, et al. Neutrophil activation by anti-beta 2 glycoprotein I monoclonal antibodies via fc gamma receptor II. J Leukoc Biol. 1995;57:387–94.

    Google Scholar 

  92. Gladigau G, Haselmayer P, Scharrer I, et al. A role for toll-like receptor mediated signals in neutrophils in the pathogenesis of the anti-phospholipid syndrome. PLoS One. 2012;7:e42176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yalavarthi S, Gould TJ, Rao AN, Mazza LF, et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol (Hoboken, NJ). 2015;67:2990–3003.

    Article  CAS  Google Scholar 

  94. Ritis K, Doumas M, Mastellos D, et al. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J Immunol (Baltimore, Md : 1950). 2006;177:4794–802.

    Article  CAS  Google Scholar 

  95. Perez-Sanchez C, Ruiz-Limon P, Aguirre MA, et al. Mitochondrial dysfunction in antiphospholipid syndrome: implications in the pathogenesis of the disease and effects of coenzyme Q(10) treatment. Blood. 2012;119:5859–70.

    Article  CAS  PubMed  Google Scholar 

  96. Leffler J, Stojanovich L, Shoenfeld Y, Bogdanovic G, Hesselstrand R, Blom AM. Degradation of neutrophil extracellular traps is decreased in patients with antiphospholipid syndrome. Clin Exp Rheumatol. 2014;32:66–70.

    PubMed  Google Scholar 

  97. Yalavarthi S, Knight JS. Low-density granulocytes as a potential source of neutrophil extracellular traps in antiphospholipid syndrome. Arthritis Rheumatol (Hoboken, NJ). 2016. PMID 26748667 doi:10.1002/art.39579 (reply to a letter).

    Google Scholar 

  98. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science (New York, NY). 2004;303:1532–5.

    Article  CAS  Google Scholar 

  99. Rao AN, Kazzaz NM, Knight JS. Do neutrophil extracellular traps contribute to the heightened risk of thrombosis in inflammatory diseases? World J Cardiol. 2015;7:829–42.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Knight JS, Zhao W, Luo W, et al. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J Clin Invest. 2013;123:2981–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Brill A, Fuchs TA, Savchenko AS, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost JTH. 2012;10:136–44.

    Article  CAS  PubMed  Google Scholar 

  102. van den Hoogen LL, Fritsch-Stork RD, van Roon JA, Radstake TR. Low density granulocytes are increased in the antiphospholipid syndrome and are associated with anti-beta2GPI antibodies: comment on the article by Yalavarthi et al. Arthritis Rheumatol (Hoboken, NJ). 2016;68:1320–1.

    Google Scholar 

  103. Allen KL, Fonseca FV, Betapudi V, Willard B, Zhang J, McCrae KR. A novel pathway for human endothelial cell activation by antiphospholipid/anti-beta2 glycoprotein I antibodies. Blood. 2012;119:884–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang J, McCrae KR. Annexin A2 mediates endothelial cell activation by antiphospholipid/anti-beta2 glycoprotein I antibodies. Blood. 2005;105:1964–9.

    Article  CAS  PubMed  Google Scholar 

  105. Lutters BC, Derksen RH, Tekelenburg WL, Lenting PJ, Arnout J, de Groot PG. Dimers of beta 2-glycoprotein I increase platelet deposition to collagen via interaction with phospholipids and the apolipoprotein E receptor 2'. J Biol Chem. 2003;278:33831–8.

    Article  CAS  PubMed  Google Scholar 

  106. Satta N, Kruithof EK, Fickentscher C, et al. Toll-like receptor 2 mediates the activation of human monocytes and endothelial cells by antiphospholipid antibodies. Blood. 2011;117:5523–31.

    Article  CAS  PubMed  Google Scholar 

  107. Vega-Ostertag ME, Ferrara DE, Romay-Penabad Z, et al. Role of p38 mitogen-activated protein kinase in antiphospholipid antibody-mediated thrombosis and endothelial cell activation. J Thromb Haemost JTH. 2007;5:1828–34.

    Article  CAS  PubMed  Google Scholar 

  108. Oku K, Amengual O, Zigon P, Horita T, Yasuda S, Atsumi T. Essential role of the p38 mitogen-activated protein kinase pathway in tissue factor gene expression mediated by the phosphatidylserine-dependent antiprothrombin antibody. Rheumatology (Oxford, England). 2013;52:1775–84.

    Article  CAS  Google Scholar 

  109. Simoncini S, Sapet C, Camoin-Jau L, et al. Role of reactive oxygen species and p38 MAPK in the induction of the pro-adhesive endothelial state mediated by IgG from patients with anti-phospholipid syndrome. Int Immunol. 2005;17:489–500.

    Article  CAS  PubMed  Google Scholar 

  110. Tian B, Nowak DE, Brasier AR. A TNF-induced gene expression program under oscillatory NF-kappaB control. BMC Genomics. 2005;6:137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Yang J, Mitra A, Dojer N, Fu S, Rowicka M, Brasier AR. A probabilistic approach to learn chromatin architecture and accurate inference of the NF-kappaB/RelA regulatory network using ChIP-Seq. Nucleic Acids Res. 2013;41:7240–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Aronovich R, Gurwitz D, Kloog Y, Chapman J. Antiphospholipid antibodies, thrombin and LPS activate brain endothelial cells and Ras-dependent pathways through distinct mechanisms. Immunobiology. 2005;210:781–8.

    Article  CAS  PubMed  Google Scholar 

  113. Brandt KJ, Fickentscher C, Boehlen F, Kruithof EK, de Moerloose P. NF-kappaB is activated from endosomal compartments in antiphospholipid antibodies-treated human monocytes. J Thromb Haemost JTH. 2014;12:779–91.

    Article  CAS  PubMed  Google Scholar 

  114. Bohgaki M, Matsumoto M, Atsumi T, et al. Plasma gelsolin facilitates interaction between beta2 glycoprotein I and alpha5beta1 integrin. J Cell Mol Med. 2011;15:141–51.

    Article  CAS  PubMed  Google Scholar 

  115. Xia L, Zhou H, Hu L, et al. Both NF-kappaB and c-Jun/AP-1 involved in anti-beta2GPI/beta2GPI-induced tissue factor expression in monocytes. Thromb Haemost. 2013;109:643–51.

    Article  CAS  PubMed  Google Scholar 

  116. Urbanus RT, Pennings MT, Derksen RH, de Groot PG. Platelet activation by dimeric beta2-glycoprotein I requires signaling via both glycoprotein Ibalpha and apolipoprotein E receptor 2'. J Thromb Haemost JTH. 2008;6:1405–12.

    Article  CAS  PubMed  Google Scholar 

  117. Sikara MP, Routsias JG, Samiotaki M, et al. {beta}2 glycoprotein I ({beta}2GPI) binds platelet factor 4 (PF4): implications for the pathogenesis of antiphospholipid syndrome. Blood. 2010;115:713–23.

    Google Scholar 

  118. Vega-Ostertag M, Harris EN, Pierangeli SS. Intracellular events in platelet activation induced by antiphospholipid antibodies in the presence of low doses of thrombin. Arthritis Rheum. 2004;50:2911–9.

    Article  CAS  PubMed  Google Scholar 

  119. Shi T, Giannakopoulos B, Yan X, et al. Anti-beta2-glycoprotein I antibodies in complex with beta2-glycoprotein I can activate platelets in a dysregulated manner via glycoprotein Ib-IX-V. Arthritis Rheum. 2006;54:2558–67.

    Article  CAS  PubMed  Google Scholar 

  120. Terrisse AD, Laurent PA, Garcia C, et al. The class I phosphoinositide 3-kinases alpha and beta control antiphospholipid antibodies-induced platelet activation. Thromb Haemost. 2016;115:1138–46.

    Article  PubMed  Google Scholar 

  121. Hemker HC, van Rijn JL, Rosing J, van Dieijen G, Bevers EM, Zwaal RF. Platelet membrane involvement in blood coagulation. Blood Cells. 1983;9:303–17.

    CAS  PubMed  Google Scholar 

  122. Roubey RA. Tissue factor pathway and the antiphospholipid syndrome. J Autoimmun. 2000;15:217–20.

    Article  CAS  PubMed  Google Scholar 

  123. Adams MJ, Donohoe S, Mackie IJ, Machin SJ. Anti-tissue factor pathway inhibitor activity in patients with primary antiphospholipid syndrome. Br J Haematol. 2001;114:375–9.

    Article  CAS  PubMed  Google Scholar 

  124. Salemink I, Blezer R, Willems GM, Galli M, Bevers E, Lindhout T. Antibodies to beta2-glycoprotein I associated with antiphospholipid syndrome suppress the inhibitory activity of tissue factor pathway inhibitor. Thromb Haemost. 2000;84:653–6.

    CAS  PubMed  Google Scholar 

  125. Liestol S, Sandset PM, Jacobsen EM, Mowinckel MC, Wisloff F. Decreased anticoagulant response to tissue factor pathway inhibitor type 1 in plasmas from patients with lupus anticoagulants. Br J Haematol. 2007;136:131–7.

    Article  PubMed  CAS  Google Scholar 

  126. Bouwens EA, Stavenuiter F, Mosnier LO. Mechanisms of anticoagulant and cytoprotective actions of the protein C pathway. J Thromb Haemost JTH. 2013;11(Suppl 1):242–53.

    Article  PubMed  Google Scholar 

  127. Kalafatis M, Rand MD, Mann KG. The mechanism of inactivation of human factor V and human factor Va by activated protein C. J Biol Chem. 1994;269:31869–80.

    CAS  PubMed  Google Scholar 

  128. Nicolaes GA, Tans G, Thomassen MC, et al. Peptide bond cleavages and loss of functional activity during inactivation of factor Va and factor VaR506Q by activated protein C. J Biol Chem. 1995;270:21158–66.

    Article  CAS  PubMed  Google Scholar 

  129. Nojima J, Kuratsune H, Suehisa E, et al. Acquired activated protein C resistance associated with anti-protein S antibody as a strong risk factor for DVT in non-SLE patients. Thromb Haemost. 2002;88:716–22.

    CAS  PubMed  Google Scholar 

  130. Pengo V, Biasiolo A, Brocco T, Tonetto S, Ruffatti A. Autoantibodies to phospholipid-binding plasma proteins in patients with thrombosis and phospholipid-reactive antibodies. Thromb Haemost. 1996;75:721–4.

    CAS  PubMed  Google Scholar 

  131. Malia RG, Kitchen S, Greaves M, Preston FE. Inhibition of activated protein C and its cofactor protein S by antiphospholipid antibodies. Br J Haematol. 1990;76:101–7.

    Article  CAS  PubMed  Google Scholar 

  132. Keeling DM, Wilson AJ, Mackie IJ, Isenberg DA, Machin SJ. Role of beta 2-glycoprotein I and anti-phospholipid antibodies in activation of protein C in vitro. J Clin Pathol. 1993;46:908–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mori T, Takeya H, Nishioka J, Gabazza EC, Suzuki K. beta 2-Glycoprotein I modulates the anticoagulant activity of activated protein C on the phospholipid surface. Thromb Haemost. 1996;75:49–55.

    CAS  PubMed  Google Scholar 

  134. Arachchillage DR, Efthymiou M, Mackie IJ, Lawrie AS, Machin SJ, Cohen H. Anti-protein C antibodies are associated with resistance to endogenous protein C activation and a severe thrombotic phenotype in antiphospholipid syndrome. J Thromb Haemost JTH. 2014;12:1801–9.

    Article  CAS  PubMed  Google Scholar 

  135. Oku K, Atsumi T, Bohgaki M, et al. Complement activation in patients with primary antiphospholipid syndrome. Ann Rheum Dis. 2009;68:1030–5.

    Article  CAS  PubMed  Google Scholar 

  136. Amara U, Flierl MA, Rittirsch D, Klos A, Chen H, Acker B, et al. Molecular intercommunication between the complement and coagulation systems. J Immunol (Baltimore, Md : 1950). 2010;185:5628–36.

    Article  CAS  Google Scholar 

  137. Ecker EE, Gross P. Anticomplementary power of heparin. J Infect Dis. 1929;44:250–3.

    Article  CAS  Google Scholar 

  138. Perzborn E, Strassburger J, Wilmen A, et al. In vitro and in vivo studies of the novel antithrombotic agent BAY 59-7939 – an oral, direct factor Xa inhibitor. J Thromb Haemost JTH. 2005;3:514–21.

    Article  CAS  PubMed  Google Scholar 

  139. Xarelto (rivaroxaban) 15 and 20mg film-coated tablets. Summary of Product Characteristics. : eMC; [updated 17 Jul 2016. Bayer Pharma AG]. Available from: http://www.emc.medicines.org.uk/emc/medicine/25586.

  140. Cohen H, Hunt BJ, Efthymiou M, et al. Rivaroxaban versus warfarin to treat patients with thrombotic antiphospholipid syndrome, with or without systemic lupus erythematosus (RAPS): a randomised, controlled, open-label, phase 2/3, non-inferiority trial. Lancet Haematol. 2016;3:e426–36.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Arachchillage DR, Mackie IJ, Efthymiou M, et al. Rivaroxaban limits complement activation compared with warfarin in antiphospholipid syndrome patients with venous thromboembolism. J Thromb Haemost JTH. 2016;14:2177–86.

    Article  CAS  PubMed  Google Scholar 

  142. Long AT, Kenne E, Jung R, Fuchs TA, Renne T. Contact system revisited: an interface between inflammation, coagulation, and innate immunity. J Thromb Haemost JTH. 2016;14:427–37.

    Article  CAS  PubMed  Google Scholar 

  143. Franco AT, Corken A, Ware J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood. 2015;126:582–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Polz E, Kostner GM. The binding of beta 2-glycoprotein-I to human serum lipoproteins: distribution among density fractions. FEBS Lett. 1979;102:183–6.

    Article  CAS  PubMed  Google Scholar 

  145. Schwarzenbacher R, Zeth K, Diederichs K, et al. Crystal structure of human beta2-glycoprotein I: implications for phospholipid binding and the antiphospholipid syndrome. EMBO J. 1999;18:6228–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Balasubramanian K, Chandra J, Schroit AJ. Immune clearance of phosphatidylserine-expressing cells by phagocytes. The role of beta2-glycoprotein I in macrophage recognition. J Biol Chem. 1997;272:31113–7.

    Article  CAS  PubMed  Google Scholar 

  147. Balasubramanian K, Schroit AJ. Characterization of phosphatidylserine-dependent beta2-glycoprotein I macrophage interactions. Implications for apoptotic cell clearance by phagocytes. J Biol Chem. 1998;273:29272–7.

    Article  CAS  PubMed  Google Scholar 

  148. Chonn A, Semple SC, Cullis PR. Beta 2 glycoprotein I is a major protein associated with very rapidly cleared liposomes in vivo, suggesting a significant role in the immune clearance of “non-self” particles. J Biol Chem. 1995;270:25845–9.

    Article  CAS  PubMed  Google Scholar 

  149. Agar C, de Groot PG, Morgelin M, et al. Beta(2)-glycoprotein I: a novel component of innate immunity. Blood. 2011;117:6939–47.

    Article  CAS  PubMed  Google Scholar 

  150. Gropp K, Weber N, Reuter M, et al. Beta(2)-glycoprotein I, the major target in antiphospholipid syndrome, is a special human complement regulator. Blood. 2011;118:2774–83.

    Article  CAS  PubMed  Google Scholar 

  151. Ioannou Y, Zhang JY, Qi M, et al. Novel assays of thrombogenic pathogenicity in the antiphospholipid syndrome based on the detection of molecular oxidative modification of the major autoantigen beta2-glycoprotein I. Arthritis Rheum. 2011;63:2774–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Giannakopoulos B, Krilis SA. The pathogenesis of the antiphospholipid syndrome. N Engl J Med. 2013;368:1033–44.

    Article  CAS  PubMed  Google Scholar 

  153. Ioannou Y, Zhang JY, Passam FH, et al. Naturally occurring free thiols within beta 2-glycoprotein I in vivo: nitrosylation, redox modification by endothelial cells, and regulation of oxidative stress-induced cell injury. Blood. 2010;116:1961–70.

    Article  CAS  PubMed  Google Scholar 

  154. Nilsson M, Wasylik S, Morgelin M, et al. The antibacterial activity of peptides derived from human beta-2 glycoprotein I is inhibited by protein H and M1 protein from streptococcus pyogenes. Mol Microbiol. 2008;67:482–92.

    Article  CAS  PubMed  Google Scholar 

  155. Weitz IC. Complement the hemostatic system: an intimate relationship. Thromb Res. 2014;133(Suppl 2):S117–21.

    Article  CAS  PubMed  Google Scholar 

  156. Birmingham DJ, Hebert LA. The complement system in lupus nephritis. Semin Nephrol. 2015;35:444–54.

    Article  CAS  PubMed  Google Scholar 

  157. Salmon JE, Girardi G. Antiphospholipid antibodies and pregnancy loss: a disorder of inflammation. J Reprod Immunol. 2008;77:51–6.

    Article  CAS  PubMed  Google Scholar 

  158. Devreese KM, Hoylaerts MF. Is there an association between complement activation and antiphospholipid antibody-related thrombosis? Thromb Haemost. 2010;104:1279–81.

    Article  CAS  PubMed  Google Scholar 

  159. Sarmiento E, Dale J, Arraya M, et al. CD8+DR+ T-cells and C3 complement serum concentration as potential biomarkers in thrombotic antiphospholipid syndrome. Autoimmune Dis. 2014;2014:868652.

    PubMed  PubMed Central  Google Scholar 

  160. Davis WD, Brey RL. Antiphospholipid antibodies and complement activation in patients with cerebral ischemia. Clin Exp Rheumatol. 1992;10:455–60.

    CAS  PubMed  Google Scholar 

  161. Breen KA, Seed P, Parmar K, Moore GW, Stuart-Smith SE, Hunt BJ. Complement activation in patients with isolated antiphospholipid antibodies or primary antiphospholipid syndrome. Thromb Haemost. 2012;107:423–9.

    Article  CAS  PubMed  Google Scholar 

  162. Breen KA, Kilpatrick DC, Swierzko AS, Cedzynski M, Hunt BJ. Lack of association of serum mannose/mannan binding lectin or ficolins with complement activation in patients with antiphospholipid antibodies. Blood Coagul Fibrinolysis Int J Haemost Thromb. 2014;25:644–5.

    CAS  Google Scholar 

  163. Watanabe H, Sugimoto M, Asano T, et al. Relationship of complement activation route with clinical manifestations in Japanese patients with systemic lupus erythematosus: a retrospective observational study. Mod Rheumatol. 2015;25:205–9.

    Article  CAS  PubMed  Google Scholar 

  164. Munakata Y, Saito T, Matsuda K, Seino J, Shibata S, Sasaki T. Detection of complement-fixing antiphospholipid antibodies in association with thrombosis. Thromb Haemost. 2000;83:728–31.

    CAS  PubMed  Google Scholar 

  165. Peerschke EI, Yin W, Alpert DR, Roubey RA, Salmon JE, Ghebrehiwet B. Serum complement activation on heterologous platelets is associated with arterial thrombosis in patients with systemic lupus erythematosus and antiphospholipid antibodies. Lupus. 2009;18:530–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Meroni PL, Macor P, Durigutto P, et al. Complement activation in antiphospholipid syndrome and its inhibition to prevent rethrombosis after arterial surgery. Blood. 2016;127:365–7.

    Google Scholar 

  167. Jimenez-Dalmaroni MJ, Gerswhin ME, Adamopoulos IE. The critical role of toll-like receptors – from microbial recognition to autoimmunity: a comprehensive review. Autoimmun Rev. 2016;15:1–8.

    Article  CAS  PubMed  Google Scholar 

  168. Benhamou Y, Bellien J, Armengol G, et al. Role of Toll-like receptors 2 and 4 in mediating endothelial dysfunction and arterial remodeling in primary arterial antiphospholipid syndrome. Arthritis Rheumatol (Hoboken, NJ). 2014;66:3210–20.

    Article  CAS  Google Scholar 

  169. Prinz N, Clemens N, Strand D, et al. Antiphospholipid antibodies induce translocation of TLR7 and TLR8 to the endosome in human monocytes and plasmacytoid dendritic cells. Blood. 2011;118:2322–32.

    Article  CAS  PubMed  Google Scholar 

  170. Raschi E, Testoni C, Bosisio D, et al. Role of the MyD88 transduction signaling pathway in endothelial activation by antiphospholipid antibodies. Blood. 2003;101:3495–500.

    Article  CAS  PubMed  Google Scholar 

  171. Lambrianides A, Carroll CJ, Pierangeli SS, et al. Effects of polyclonal IgG derived from patients with different clinical types of the antiphospholipid syndrome on monocyte signaling pathways. J Immunol (Baltimore, Md : 1950). 2010;184:6622–8.

    Article  CAS  Google Scholar 

  172. Zhou H, Sheng L, Wang H, et al. Anti-beta2GPI/beta2GPI stimulates activation of THP-1 cells through TLR4/MD-2/MyD88 and NF-kappaB signaling pathways. Thromb Res. 2013;132:742–9.

    Article  CAS  PubMed  Google Scholar 

  173. Alard JE, Gaillard F, Daridon C, et al. TLR2 is one of the endothelial receptors for beta 2-glycoprotein I. J Immunol (Baltimore, Md: 1950). 2010;185:1550–7.

    Google Scholar 

  174. Martirosyan A, Petrek M, Navratilova Z, et al. Differential regulation of proinflammatory mediators following LPS- and ATP-induced activation of monocytes from patients with antiphospholipid syndrome. Biomed Res Int. 2015;2015:292851.

    Google Scholar 

  175. Raschi E, Chighizola CB, Grossi C, et al. beta2-glycoprotein I, lipopolysaccharide and endothelial TLR4: three players in the two hit theory for anti-phospholipid-mediated thrombosis. J Autoimmun. 2014;55:42–50.

    Article  CAS  PubMed  Google Scholar 

  176. Laplante P, Amireault P, Subang R, Dieude M, Levine JS, Rauch J. Interaction of beta2-glycoprotein I with lipopolysaccharide leads to toll-like receptor 4 (TLR4)-dependent activation of macrophages. J Biol Chem. 2011;286:42494–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Giannakopoulos B, Mirarabshahi P, Qi M, et al. Deletion of the antiphospholipid syndrome autoantigen beta2 -glycoprotein I potentiates the lupus autoimmune phenotype in a Toll-like receptor 7-mediated murine model. Arthritis Rheumatol (Hoboken, NJ). 2014;66:2270–80.

    Article  CAS  Google Scholar 

  178. de Laat B, Pengo V, Pabinger I, et al. The association between circulating antibodies against domain I of beta2-glycoprotein I and thrombosis: an international multicenter study. J Thromb Haemost JTH. 2009;7:1767–73.

    Article  PubMed  Google Scholar 

  179. Iverson GM, Victoria EJ, Marquis DM. Anti-beta2 glycoprotein I (beta2GPI) autoantibodies recognize an epitope on the first domain of beta2GPI. Proc Natl Acad Sci U S A. 1998;95:15542–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Reddel SW, Wang YX, Sheng YH, Krilis SA. Epitope studies with anti-beta 2-glycoprotein I antibodies from autoantibody and immunized sources. J Autoimmun. 2000;15:91–6.

    Article  CAS  PubMed  Google Scholar 

  181. de Laat B, Derksen RH, Urbanus RT, de Groot PG. IgG antibodies that recognize epitope Gly40-Arg43 in domain I of beta 2-glycoprotein I cause LAC, and their presence correlates strongly with thrombosis. Blood. 2005;105:1540–5.

    Article  PubMed  CAS  Google Scholar 

  182. Iverson GM, Reddel S, Victoria EJ, et al. Use of single point mutations in domain I of beta 2-glycoprotein I to determine fine antigenic specificity of antiphospholipid autoantibodies. J Immunol (Baltimore, Md : 1950). 2002;169:7097–103.

    Article  CAS  Google Scholar 

  183. Ioannou Y, Pericleous C, Giles I, Latchman DS, Isenberg DA, Rahman A. Binding of antiphospholipid antibodies to discontinuous epitopes on domain I of human beta(2)-glycoprotein I: mutation studies including residues R39 to R43. Arthritis Rheum. 2007;56:280–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Andreoli L, Nalli C, Motta M, et al. Anti-beta(2)-glycoprotein I IgG antibodies from 1-year-old healthy children born to mothers with systemic autoimmune diseases preferentially target domain 4/5: might it be the reason for their ‘innocent’ profile? Ann Rheum Dis. 2011;70:380–3.

    Article  CAS  PubMed  Google Scholar 

  185. Pericleous C, Miles J, Esposito D, et al. Evaluating the conformation of recombinant domain I of beta(2)-glycoprotein I and its interaction with human monoclonal antibodies. Mol Immunol. 2011;49:56–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Pierangeli SS, Liu X, Espinola R, et al. Functional analyses of patient-derived IgG monoclonal anticardiolipin antibodies using in vivo thrombosis and in vivo microcirculation models. Thromb Haemost. 2000;84:388–95.

    CAS  PubMed  Google Scholar 

  187. Giles I, Pericleous C, Liu X, et al. Thrombin binding predicts the effects of sequence changes in a human monoclonal antiphospholipid antibody on its in vivo biologic actions. J Immunol (Baltimore, Md : 1950). 2009;182:4836–43.

    Article  CAS  Google Scholar 

  188. Murthy V, Willis R, Romay-Penabad Z, et al. Value of isolated IgA anti-beta2 -glycoprotein I positivity in the diagnosis of the antiphospholipid syndrome. Arthritis Rheum. 2013;65:3186–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Akhter E, Shums Z, Norman GL, et al. Utility of antiphosphatidylserine/prothrombin and IgA antiphospholipid assays in systemic lupus erythematosus. J Rheumatol. 2013;40:282–6.

    Google Scholar 

  190. Pericleous C, Garza-Garcia A, Murfitt L, et al. Profiling sub-types of anti-beta 2 glycoprotein I and anti-domain I antibodies may distinguish between different clinical phenotypes of the antiphospholipid syndrome. Arthritis Rheum. 2011;63:S9.

    Google Scholar 

  191. Rodriguez-Garcia V, Ioannou Y, Fernandez-Nebro A, Isenberg DA, Giles IP. Examining the prevalence of non-criteria anti-phospholipid antibodies in patients with anti-phospholipid syndrome: a systematic review. Rheumatology (Oxford, England). 2015;54:2042–50.

    Article  Google Scholar 

  192. Andreoli L, Fredi M, Nalli C, et al. Clinical significance of IgA anti-cardiolipin and IgA anti-beta2glycoprotein I antibodies. Curr Rheumatol Rep. 2013;15:343.

    Article  PubMed  CAS  Google Scholar 

  193. Lakos G, Favaloro EJ, Harris EN, et al. International consensus guidelines on anticardiolipin and anti-beta2-glycoprotein I testing: report from the 13th international congress on antiphospholipid antibodies. Arthritis Rheum. 2012;64:1–10.

    Article  PubMed  Google Scholar 

  194. Poulton K, Rahman A, Giles I. Examining how antiphospholipid antibodies activate intracellular signaling pathways: a systematic review. Semin Arthritis Rheum. 2012;41:720–36.

    Article  CAS  PubMed  Google Scholar 

  195. Lopez-Pedrera C, Cuadrado MJ, Herandez V, et al. Proteomic analysis in monocytes of antiphospholipid syndrome patients: deregulation of proteins related to the development of thrombosis. Arthritis Rheum. 2008;58:2835–44.

    Article  PubMed  Google Scholar 

  196. Lopez-Pedrera C, Ruiz-Limon P, Aguirre MA, et al. Global effects of fluvastatin on the prothrombotic status of patients with antiphospholipid syndrome. Ann Rheum Dis. 2011;70:675–82.

    Article  CAS  PubMed  Google Scholar 

  197. Ripoll VM, Lambrianides A, Pierangeli SS, et al. Changes in regulation of human monocyte proteins in response to IgG from patients with antiphospholipid syndrome. Blood. 2014;124:3808–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Betapudi V, Lominadze G, Hsi L, Willard B, Wu M, McCrae KR. Anti-beta2GPI antibodies stimulate endothelial cell microparticle release via a nonmuscle myosin II motor protein-dependent pathway. Blood. 2013;122:3808–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Ulrich V, Konaniah ES, Lee WR, et al. Antiphospholipid antibodies attenuate endothelial repair and promote neointima formation in mice. J Am Heart Assoc. 2014;3:e001369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Ulrich V, Gelber SE, Vukelic M, et al. ApoE Receptor 2 Mediation of Trophoblast Dysfunction and Pregnancy Complications Induced by Antiphospholipid Antibodies in Mice. Arthritis Rheumatol (Hoboken, NJ). 2016;68:730–9.

    Article  CAS  Google Scholar 

  201. Permpikul P, Rao LV, Rapaport SI. Functional and binding studies of the roles of prothrombin and beta 2-glycoprotein I in the expression of lupus anticoagulant activity. Blood. 1994;83:2878–92.

    CAS  PubMed  Google Scholar 

  202. Mulla MJ, Brosens JJ, Chamley LW, et al. Antiphospholipid antibodies induce a pro-inflammatory response in first trimester trophoblast via the TLR4/MyD88 pathway. Am J Reprod Immunol (New York, NY : 1989). 2009;62:96–111.

    Article  CAS  Google Scholar 

  203. Carroll TY, Mulla MJ, Han CS, et al. Modulation of trophoblast angiogenic factor secretion by antiphospholipid antibodies is not reversed by heparin. Am J Reprod Immunol (New York, NY : 1989). 2011;66:286–96.

    Article  CAS  Google Scholar 

  204. Zuily S, De Laat B, Regnault V, et al. Which test is the best predictor of thrombosis in patients with antiphospholipid antibodies and associated autoimmune diseases? Lupus. 2016;25:OP08.

    Google Scholar 

  205. Chighizola CB, Andreoli L, Tonello M, et al. The clinical relevance of antibodies against domain 1 and domain 4/5 of β2 glycoprotein I in obstetric antiphospholipid syndrome. Lupus. 2016;25:OP21.

    Google Scholar 

  206. McDonnell T, Willis R, Pericleous C, et al. PEGylated DI inhibits thrombosis in a mouse model of antiphospholipid syndrome. Lupus. 2016;25:PP044.

    Google Scholar 

  207. Martinez-Flores JA, Cabrera O, Serrano M, et al. Circulating immune complexes of IgA bound to beta 2 glycoprotein I are strongly associated with the occurrence of acute thrombotic events. Lupus. 2016;25:OP22.

    Google Scholar 

  208. Martinez-Flores JA, Cabrera O, Perez D, et al. Association of recent thrombotic events with circulating immune complexes of IgG and IgM bound to B2 glycoprotein I. Lupus. 2016;25:PP039.

    Google Scholar 

  209. Gerosa M, Lonati P, Rovelli F, et al. Levels of cell-bound C4d in primary antiphospholipid syndrome in comparison to systemic lupus erythematosus. Lupus. 2016;25:OP06.

    Google Scholar 

  210. Zuily S, Regnault V, Mohamed M, et al. Activated protein C resistance determined by thrombin generation can predict thrombosis in antiphospholipid-positive patients and associated AutoImmune diseases. A Multicenter Prospective Cohort Study. Lupus. 2016;25:PP035.

    Google Scholar 

  211. Efthymiou M, Arachchcillage D, Lane PJ, Cohen H, Mackie I. Co-existence of antibodies to tissue factor pathway inhibitor and protein C may provide a marker for a severe thrombotic phenotype. Lupus. 2016;25:PP036.

    Google Scholar 

  212. Stanisavljevic N, Stojanovich L, Marisavljevic D, Djokovic A. Neutrophil-lymphocyte ratio in antiphospholipid syndrome as a risk factor for thrombosis. Lupus. 2016;25:PP063.

    Google Scholar 

  213. Stanisavljevic N, Stojanovich L, Djokovic A, Marisavljevic D, Bogdanovic G. Platelets indices in occurrence of thrombosis in antiphospholipid syndrome patients. Lupus. 2016;25:PP064.

    Google Scholar 

  214. Crawley JT, Scully MA. Thrombotic thrombocytopenic purpura: basic pathophysiology and therapeutic strategies. Hematology Am Soc Hematol Educ Program. 2013;2013:292–9.

    PubMed  Google Scholar 

  215. Austin SK, Starke RD, Lawrie AS, Cohen H, Machin SJ, Mackie IJ. The VWF/ADAMTS13 axis in the antiphospholipid syndrome: ADAMTS13 antibodies and ADAMTS13 dysfunction. Br J Haematol. 2008;141:536–44.

    Article  CAS  PubMed  Google Scholar 

  216. Mazetto BM, Tobaldini LQ, Saraiva S, et al. von Willebrand factor and ADAMTS13 imbalance in patients with trombotic antiphospholipid syndrome. Lupus. 2016;25:PP065.

    Google Scholar 

  217. Zhou S, Chen G, Qi M, et al. Gram negative bacterial inflammation ameliorated by the plasma protein Beta 2-glycoprotein I. Sci Rep. 2016;6:33656.

    Google Scholar 

  218. Knight JS, Coit P, Meng H, et al. Antiphospholipid syndrome neutrophils are characterized by overexpression of P-selectin glycoprotein ligand 1, a potential therapeutic target. Lupus. 2016;25:OP04.

    Article  Google Scholar 

  219. Willis R, Grant P, Romay-Penabad Z, et al. Antiphospholipid antibody-mediated increase of tissue factor in arterial wall is associated with increased thrombus size in a mouse model. Lupus. 2016;25:OP05.

    Google Scholar 

  220. Zuily S, Heymonet M, Qian T, et al. Circulating endothelial cells can identify patients with antiphospholipid-antibodies at risk for thrombosis. Lupus. 2016;25:OP23.

    Google Scholar 

  221. Ruiz-Irastorza G, Cuadrado MJ, Ruiz-Arruza I, et al. Evidence-based recommendations for the prevention and long-term management of thrombosis in antiphospholipid antibody-positive patients: report of a task force at the 13th International Congress on antiphospholipid antibodies. Lupus. 2011;20:206–18.

    Article  CAS  PubMed  Google Scholar 

  222. Erkan D, Harrison MJ, Levy R, et al. Aspirin for primary thrombosis prevention in the antiphospholipid syndrome: a randomized, double-blind, placebo-controlled trial in asymptomatic antiphospholipid antibody-positive individuals. Arthritis Rheum. 2007;56:2382–91.

    Article  CAS  PubMed  Google Scholar 

  223. Erkan D, Sciascia SS, Unlu O, et al. A multicenter randomized controlled trial of hydroxychloroquine in primary thrombosis prophylaxis of persistently antiphospholipid antibody-positive patients without systemic autoimmune diseases. Lupus. 2016;25:PP136.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rohan Willis or Philip G. de Groot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Willis, R. et al. (2017). Mechanisms of Antiphospholipid Antibody-Mediated Thrombosis. In: Erkan, D., Lockshin, M. (eds) Antiphospholipid Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-55442-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55442-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55440-2

  • Online ISBN: 978-3-319-55442-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics