Skip to main content

Environmental Bioremediation by Biosorption and Bioaccumulation: Principles and Applications

  • Chapter
  • First Online:
Enhancing Cleanup of Environmental Pollutants

Abstract

The historical and everyday environmental pollution generates numerous impacts on the environmental quality and human health. Anthropogenic activities, in particular the industrial and agricultural systems, release in the environment large quantities of pollutants of inorganic and organic nature, which can be transported, immobilized, degraded, or bioaccumulated in the environmental compartments (water, air, soil) and in the ecological components (plants, animals). From there, they are easily available to humans through the food chain. This is why numerous efforts have been invested for the reduction and/or removal of pollution from the environment, together with preventive actions. Diverse physico-chemical and biological options and processes were applied to remove and/or transform different kind of pollutants (heavy metals, dyes, persistent organic pollutants) from the environment. Physico-chemical processes including chemical precipitation, ion exchange, adsorption, membrane separation, coagulation, flocculation, flotation, electrochemical technologies, etc. were applied for the mobilization, immobilization, or degradation of various pollutants. However, some of these processes, although with fast results in some cases, proved to be less efficient and more expensive than bioremediation-based processes. The biological applications, considered as low-cost alternatives, gained more and more the interest of scientists and stakeholders for ensuring a sustainable environmental remediation. This work discusses some current aspects and perspectives in the environmental bioremediation by biosorption and bioaccumulation, which exploit the potential of non-living and living biomass to immobilize and biodegrade persistent contaminants. A focus on past and present studies addressing the bioremediation of both inorganic and organic pollutants, their bioavailability in the environment, mechanisms, and impacts of environmental factors on the removal efficiency by biosorption and bioaccumulation was considered. Various biosorbents for the removal of these contaminants, such as agricultural or industrial wastes, microbial-based biomass (bacteria, fungi), algae, and plant-based biomass, are considered from impact, tolerance to persistent pollutants, effectiveness, and cost perspectives. This approach contributes to a better understanding of biological processes, so as to overcome the technical barriers in the application of biosorption and bioaccumulation processes that delay the commercialization and to increase their scale-up potential for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdolali A, Guo WS, Ngo HH, Chen SS, Nguyen NC, Tung KL (2014) Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review. Bioresource Technol 160:57–66

    Article  CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    Article  CAS  Google Scholar 

  • Ahmad A, Ghufran R, Faizal WM (2010) Cd(II), Pb(II) and Zn(II) removal from contaminated water by biosorption using activated sludge biomass. Clean 38:153–158

    CAS  Google Scholar 

  • Akbari M, Hallajisani A, Keshtkar AR, Shahbeig H, Ghorbanian SA (2015) Equilibrium and kinetic study and modeling of Cu(II) and Co(II) synergistic biosorption from Cu(II)-Co(II) single and binary mixtures on brown algae C. indica. J Environ Chem Eng 3:140–149

    Article  CAS  Google Scholar 

  • Anastopoulos I, Kyzas GZ (2015) Progress in batch biosorption of heavy metals onto algae. J Mol Liq 209:77–86

    Article  CAS  Google Scholar 

  • Apostol LC, Pereira L, Pereira R, Gavrilescu M, Alves MM (2012) Biological decolorization of xanthene dyes by anaerobic granular biomass. Biodegradation 23:725–737

    Article  CAS  Google Scholar 

  • Apostol LC, Ghinea C, Alves MM, Gavrilescu M (2015a) Removal of Erythrosine B dye from water effluents using crop waste pumpkin seed hulls as sorbent. Desalin Water Treat 57:22585–22608

    Google Scholar 

  • Apostol LC, Smaranda C, Diaconu M, Gavrilescu M (2015b) Preliminary ecotoxicological evaluation of Erythrosin B and its photocatalytic degradation products. Environ Eng Manage J 14:465–471

    CAS  Google Scholar 

  • Arief VO, Trilestari K, Sunarso J, Indraswati N, Ismadji S, Mandala W, Catholic S, Mandala W, Catholic S (2008) Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies. Clean 36:937–962

    CAS  Google Scholar 

  • Aryal M, Liakopoulou-Kyriakides M (2014) Characterization of Mycobacterium sp. strain Spyr1 biomass and its biosorption behavior toward Cr(III) and Cr(VI) in single, binary and multi-ion aqueous systems. J Chem Technol Biotechnol 89:559–568

    Article  CAS  Google Scholar 

  • Battele, Exponent (2000) Final guide for incorporating bioavailability adjustments into human health and ecological risk assessments at U.S. Navy and Marine Corps Facilities. Part 1: Overview of metals bioavailability, On line at: http://aec.army.mil/usaec/cleanup/bioavailability01.pdf

  • Baveye P, Bladon R (1999) Bioavailability of organic xenobiotics in the environment. Practical consequences for the environment. Part 2. Springer/Dordrecht The Netherlands, pp 227–248

    Google Scholar 

  • Bayramoglu G, Adiguzel N, Ersoy G, Yilmaz M, Yakup Arica M (2013) Removal of textile dyes from aqueous solution using amine-modified plant biomass of A. caricum: Equilibrium and kinetic studies. Water Air Soil Pollut 224:1640

    Article  CAS  Google Scholar 

  • Bondarenko O, Rõlova T, Kahru A, Ivask A (2008) Bioavailability of Cd, Zn and Hg in Soil to nine recombinant luminescent metal sensor bacteria. Sensors 8:6899–6923

    Article  CAS  Google Scholar 

  • Brinza L, Dring M, Gavrilescu M (2007) Marine micro and macro algal species as biosorbents for heavy metals. Environ Eng Manage J 6:237–251

    CAS  Google Scholar 

  • Brinza L, Nygård CA, Dring MJ, Gavrilescu M, Benning LG (2009) Cadmium tolerance and adsorption by the marine brown alga Fucus vesiculosus from the Irish Sea and the Bothnian Sea. Bioresour Technol 100:1727–1733

    Article  CAS  Google Scholar 

  • Brouers F, Al-Musawi TJ (2015) On the optimal use of isotherm models for the characterization of biosorption of lead onto algae. J Mol Liq 212:46–51

    Article  CAS  Google Scholar 

  • Bulgariu D, Bulgariu L (2013) Sorption of Pb(II) onto a mixture of algae waste biomass and anion exchanger resin in a packed-bed column. Bioresour Technol 129:374–380

    Article  CAS  Google Scholar 

  • Bulgariu L, Gavrilescu M (2015) Bioremediation of heavy metals by microalgae. In: Kim SK (ed) Handbook of marine microalgae: biotechnology advances. Elsevier Inc., Amsterdam, pp 457–469

    Chapter  Google Scholar 

  • Bulgariu L, Hlihor RM, Bulgariu D, Gavrilescu M (2012) Sorptive removal of cadmium(II) ions from aqueous solution by mustard biomass. Environ Eng Manage J 11:1969–1976

    CAS  Google Scholar 

  • Bulgariu L, Lupea M, Bulgariu D, Rusu C, Macoveanu M (2013) Equilibrium study of Pb(II) and Cd(II) biosorption from aqueous solution on marine green algae biomass. Environ Eng Manage J 12:183–190

    CAS  Google Scholar 

  • Çelekli A, Çelekli F, Çiçek E, Bozkurt H (2014) Predictive modeling of sorption and desorption of a reactive azo dye by pumpkin husk. Environ Sci Pollut Res 21:5086–5097

    Article  CAS  Google Scholar 

  • Chew SY, Ting ASY (2016) Biosorption behaviour of alginate-immobilized Trichoderma asperellum, a common microfungi in single- and multi-metal systems. Sep Sci Technol 53:743–748

    Article  CAS  Google Scholar 

  • Chiban M, Soudani A, Sinan F, Tahrouch S, Persin M (2011) Characterization and application of dried plants to remove heavy metals, nitrate, and phosphate ions from industrial wastewaters. Clean–Soil Air Water 39:376–383

    Article  CAS  Google Scholar 

  • Chojnacka K (2009) Biosorption and bioaccumulation in practice. Nova Science Publishers, Inc., New York

    Google Scholar 

  • Chojnacka K, Chojnacki A, Góreck H, Górecki H (2005) Bioavailability of heavy metals from polluted soils to plants. Sci Total Environ 337:175–182

    Article  CAS  Google Scholar 

  • Committee on the Design and Evaluation of Safer Chemical Substitutions (2014) A framework to inform government and industry decisions. National Academy of Sciences, National Academy Press, Washington D.C

    Google Scholar 

  • Cretescu I, Diaconu M, Cojocaru C, Benchea RE, Pohontu C (2010) Removal of DunkelBlau dye from aqueous solutions by fungal and peat biomass in batch mode. Environ Eng Manage J 9:107–112

    CAS  Google Scholar 

  • Csaba P, Csaba J (2011) Water resources management and water quality protection. Online at: http://www.tankonyvtar.hu/en/tartalom/tamop425/0032_vizkeszletgazdalkodas_es_vizminoseg/ch14s09.html

  • Dhankhar R, Guriyan RB (2011) Bacterial biosorbents for detoxification of heavy metals from aqueous solution: a review. Intl J Sci Adv Technol 2:103–128

    Google Scholar 

  • Ding Y, Jing D, Gong H, Zhou L, Yang X (2012) Biosorption of aquatic cadmium(II) by unmodified rice straw. Bioresour Technol 114:20–25

    Article  CAS  Google Scholar 

  • Doğar C, Gürses A, Açıkyıldız M, Özkanc E (2010) Thermodynamics and kinetic studies of biosorption of a basic dye from aqueous solution using green algae Ulothrix sp. Colloids Surf B Biointerfaces 76:279–285

    Article  CAS  Google Scholar 

  • Donner E, Eriksson E, Holten-Lützhøft H-C, Scholes L, Revitt M, Ledin A (2010) Identifying and classifying the sources and uses of xenobiotics in urban environments. In: Fatta-Kassinos D, et al. (eds) Xenobiotics in the urban water cycle: mass flows, environmental processes, mitigation and treatment strategies, environmental pollution, Vol. 16. Springer Science Business Media B.V., Dordrecht, The Netherlands.

    Google Scholar 

  • Duffus JH (2002) “Heavy metals”- A meaningless term? (IUPAC Technical Report). Pure Appl Chem 74:793–807

    Article  CAS  Google Scholar 

  • Ekerue C (2014) Seminar on bioaccumulation and xenobiotics. On line at: http://e-gloing.blogspot.ro/2014/11/seminar-on-bioaccumulation-and.html?view=timeslide&m=1

    Google Scholar 

  • El-Latif MMA, Ibrahim AM, El-Kady MF (2010) Adsorption Equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using biopolymer oak sawdust composite. J Am Sci 6:267–283

    Google Scholar 

  • Fasani E (2012) Plants that hyperaccumulate heavy metals. In: Furini A (ed) Plants and heavy metals. Springer, Dordrecht, The Netherlands, pp 55–74

    Chapter  Google Scholar 

  • Febrianto J, Natasia A, Sunarso J, Y-h J, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162:616–645

    Article  CAS  Google Scholar 

  • Feng M, Chen X, Li C, Nurgul R, Dong M (2012) Isolation and identification of an exopolysaccharide-producing lactic acid bacterium strain from Chinese Paocai and biosorption of Pb(II) by its exopolysaccharide. J Food Sci 77:111–117

    Article  CAS  Google Scholar 

  • Fetzner S (2008) Biodegradation of xenobiotics. In: Doelle HW, Rokem JS, Berovic M (eds) Biotechnology, Vol X. EOLSS Publications. On line at: http://www.eolss.net/sample-chapters/c17/e6-58-09-08.pdf

  • Fingerman M, Nagabhushanam R (2005) Bioremediation of aquatic and terrestrial ecosystems. Science Publishers, Inc., Enfield

    Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28

    Article  CAS  Google Scholar 

  • Gao J, Zhang Q, Su K, Chen R, Peng Y (2010) Biosorption of Acid Yellow 17 from aqueous solution by non-living aerobic granular sludge. J Hazard Mater 174:215–225

    Article  CAS  Google Scholar 

  • Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4:219–232

    Article  CAS  Google Scholar 

  • Gavrilescu M (2010) Biosorption in environmental remediation. In: Fulekar MH (ed) Bioremediation technology. Springer, Dordrecht, The Netherlands, pp 35–99

    Chapter  Google Scholar 

  • Gavrilescu M (2014) Biomass potential for sustainable environment, biorefinery products and energy. In: Visa I (ed) Sustainable energy in the built environment – Steps Towards nZEB. Proceedings of the Conference for Sustainable Energy (CSE) 2014. Springer International Publishing, pp 169–194

    Google Scholar 

  • Gavrilescu M, Demnerová K, Aamand J, Agathos S, Fava F (2015) Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. N Biotechnol 32:147–156

    Article  CAS  Google Scholar 

  • Ghosh A, Das (Saha) P, Sinha K (2015) Optimization of reduction of copper using Stenotrophomonas maltophilia PD2 biomass and artificial neural network modeling. Environ Eng Manage J 14:37–44

    CAS  Google Scholar 

  • Gourlay-Francé C, Tusseau-Vuillemin MH (2013) Bioavailability of contaminants. In: Férard JF, Blaise C (eds) Encyclopedia of aquatic ecotoxicology. Springer, Dordrecht, The Netherlands, pp 181–190

    Chapter  Google Scholar 

  • Gren I (2012) Microbial transformation of xenobiotics. Chemik 66:835–842

    CAS  Google Scholar 

  • Guendouz S, Khellaf N, Zerdaoui M, Ouchefoun M (2013) Biosorption of synthetic dyes (Direct Red 89 and Reactive Green 12) as an ecological refining step in textile effluent treatment. Environ Sci Pollut Res 20:3822–3829

    Article  CAS  Google Scholar 

  • Gül ÜD, Dönmez G (2014) Influence of surfactants on dye removal and growth of Aspergillus versicolor – an effective way to decolorize textile dye. Clean–Soil Air Water 42:917–922

    Article  CAS  Google Scholar 

  • Hamdy AA (2000) Biosorption of heavy metals by marine algae. Curr Microbiol 41:232–238

    Article  CAS  Google Scholar 

  • Hii LS, Yong S-Y, Wong C-L (2009) Removal of Rhodamine B from aqueous solution by sorption on Turbinaria conoides (Phaeophyta). J Appl Phycol 21:625–631

    Article  CAS  Google Scholar 

  • Hlihor RM, Gavrilescu M (2009) Removal of some environmentally relevant heavy metals using low-cost natural sorbents. Environ Eng Manage J 8:353–372

    CAS  Google Scholar 

  • Hlihor RM, Apostol LC, Smaranda C, Pavel VL, Căliman FA, Robu BM, Gavrilescu M (2009) Bioavailability processes for contaminants in soils and their use in risk assessment. Environ Eng Manage J 8:1199–1206

    CAS  Google Scholar 

  • Hlihor RM, Diaconu M, Fertu D, Chelaru C, Sandu I, Tavares T, Gavrilescu M (2013) Bioremediation of Cr(VI) polluted wastewaters by sorption on heat inactivated Saccharomyces cerevisiae biomass. Int J Environ Res 7:581–594

    Google Scholar 

  • Hlihor RM, Bulgariu L, Sobariu DL, Diaconu M, Tavares T, Gavrilescu M (2014) Recent advances in biosorption of heavy metals: support tools for biosorption equilibrium, kinetics and mechanism. Rev. Roum Chim 59:527–538

    Google Scholar 

  • Hlihor RM, Diaconu M, Leon F, Curteanu S, Tavares T, Gavrilescu M (2015) Experimental analysis and mathematical prediction of Cd(II) removal by biosorption using support vector machines and genetic algorithms. N Biotechnol 32:358–368

    Article  CAS  Google Scholar 

  • Hlihor RM, Figueiredo H, Tavares T, Gavrilescu M (2016) Biosorption potential of dead and living Arthrobacter viscosus biomass in the removal of Cr(VI): Batch and column studies. Process Saf Environ. http://dx.doi.org/10.1016/j.psep.2016.06.016

  • Ho Y-S (2006) Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water Res 40:119–125

    Article  CAS  Google Scholar 

  • Horník M, Šuňovská A, Partelová D, Pipíška M, Augustín J (2013) Continuous sorption of synthetic dyes on dried biomass of microalga. Chem Pap 67:254–264

    Article  CAS  Google Scholar 

  • Huang F, Dang Z, Guo C-L, Lu G-N, Gu RR, Liu H-J, Zhang H (2013) Biosorption of Cd(II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil. Colloids Surf B Biointerfaces 107:11–18

    Article  CAS  Google Scholar 

  • Ibanez JG, Hemandez-Esparza M, Doria-Serrano C, Fregoso-Infante A (2007) Environmental chemistry: fundamentals. Springer, New York

    Book  Google Scholar 

  • Igwe JC, Abia AA (2006) A biosorption process for removing heavy metals from waste water using biosorbents. African J Biotechnol 5:1167–1179

    CAS  Google Scholar 

  • Iriel A, Lagorio MG, Fernández Cirelli A (2015) Biosorption of arsenic from groundwater using Vallisneria gigantea plants. Kinetics, equilibrium and photophysical considerations. Chemosphere 138:383–389

    Article  CAS  Google Scholar 

  • Jaspers MCM, Totevova S, Demnerova K, Harms H, Van der Meer JR (1999) The use of whole-cell living biosensors to determine the bioavailability of pollutants to microorganisms. In: Baveye P, Block JC, Goncharu VV (eds) Bioavailability of organic xenobiotics in the environment. Kluwer Academic Publisher, Dordrecht, pp 153–158

    Chapter  Google Scholar 

  • Kabra AN, Khandare RV, Waghmode TR, Govindwa SP (2011) Differential fate of metabolism of a sulfonated azo dye Remazol Orange 3R by plants Aster amellus Linn., Glandularia pulchella (Sweet) Tronc. and their consortium. J Hazard Mater 190:424–431

    Article  CAS  Google Scholar 

  • Kabra AN, Khandare RV, Waghmode TR, Govindwa SP (2012) Phytoremediation of textile effluent and mixture of structurally different dyes by Glandularia pulchella (Sweet) Tronc. Chemosphere 87:265–272

    Article  CAS  Google Scholar 

  • Kadukova J, Vircikova E (2005) Comparison of differences between copper bioaccumulation and biosorption. Environ Int 31:227–232

    Article  CAS  Google Scholar 

  • Khataee AR, Dehghan G, Ebadi A, Zarei M, Pourhassan M (2010) Biological treatment of a dye solution by Macroalgae Chara sp.: Effect of operational parameters, intermediates identification and artificial neural network modeling. Bioresour Technol 101:2252–2258

    Article  CAS  Google Scholar 

  • Kotrba P (2011) Microbial biosorption of metals – general introduction. In: Kotrba P, Mackova M, Macek T (eds) Microbial biosorption of metals. Springer, Dordrecht, The Netherlands, pp 1–6

    Chapter  Google Scholar 

  • Kotrba P, Mackova M, Fiser J, Macek T (2011) The mechanism of metal cation and anion biosorption. In: Kotrba P, Mackova M, Macek T (eds) Microbial biosorption of metals. Springer, Dordrecht, The Netherlands, pp 197–233

    Chapter  Google Scholar 

  • Kumar M, Kumar D, Pandey LK, Gaur JP (2010) Methylene Blue sorption capacity of some common waste plant materials. Chem Eng Commun 197:1435–1444

    Article  CAS  Google Scholar 

  • Kumar PS, Abhinaya RV, Arthi V, GayathriLashmi K, Priyadharshini M, Sivanesan S (2014) Adsorption of Methylene Blue dye onto surface modified cashew nut shell. Environ Eng Manag J 13:545–556

    CAS  Google Scholar 

  • Lasat MM (2000) The use of plants for the removal of toxic metals from contaminated soils, Unpublished Manuscript from the US EPA, American Association for Advancement of Sciences Fellowship Program. On line at: http://nepis.epa.gov/Adobe/PDF/9100FZE1.PDF

  • Limcharoensuk T, Sooksawat N, Sumarnrote A, Awutpet T, Kruatrachue M, Pokethitiyook P, Auesukaree C (2015) Bioaccumulation and biosorption of Cd and Zn by bacteria isolated from a zinc mine in Thailand. Ecotox Environ Safe 122:322–330

    Article  CAS  Google Scholar 

  • Limousin G, Charlet L, Szenknect S, Krimissa M, Barthe V (2007) Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem 22:249–275

    Article  CAS  Google Scholar 

  • Lupea M, Bulgariu L, Macoveanu M (2012) Biosorption of Cd(II) from aqueous solution on marine green algae biomass. Environ Eng Manag J 11:607–615

    CAS  Google Scholar 

  • Miksch K, Cema G, Corvini PF-X, Sochacki A, Surmacz-Gorska J, Felis E, Wiszniowski J, Zabczynski S (2015) R&D priorities in the field of sustainable remediation and purification of agroindustrial and municipal wastewater. NewBiotechnol 32:128–132

    CAS  Google Scholar 

  • Mishra V (2014) Biosorption of zinc ion: a deep comprehension. Appl Water Sci 4:311–332

    Article  CAS  Google Scholar 

  • Mishra V, Dalal S, Balomajumder C (2013) Optimization of physical parameters for batch mode Zn (II) ion removal from liquid phase: a potential biosorption study. Environ Prog Sustain Energy 32:213–222

    Article  CAS  Google Scholar 

  • Mondal PK, Ahmad R, Kumar R (2014) Adsorptive removal of hazardous methylene blue by fruit shell of Cocos nucifera. Environ Engg Manag J 13:231–240

    CAS  Google Scholar 

  • Mudhoo A, Mohee R (2012) Elements of sustainability and bioremediation. In: Mohee R, Mudhoo A (eds) Bioremediation and sustainability. Research and applications. Wiley, Inc./Scrivener Publishing LLC, Hoboken/Salem, pp 1–42

    Chapter  Google Scholar 

  • Murugavelh S, Mohanty K (2014) Mechanism of Cr(VI) bioaccumulation by Phanerochaete chrysosporium. Environ Engg Manag J 13:281–287

    CAS  Google Scholar 

  • Naja G, Volesky B (2009) Toxicity and sources of Pb, Cd, Hg, Cr, As, and radionuclides in the environment. In: Wang LK, Chen JP, Hung Y-T, Shammas NK (eds) Heavy metals in the environment. CRC Press, Boca Raton, pp 13–62

    Google Scholar 

  • Naja G, Volesky B (2011) The mechanism of metal cation and anion biosorption. In: Kotrba P, Mackova M, Macek T (eds) Microbial biosorption of metals. Springer Science+Business Media B.V., Dordrecht, The Netherlands, pp 19–58

    Google Scholar 

  • Oliveira R, Palmieri M, Garcia O Jr (2011) Biosorption of Metals: state of the art, general features, and potential applications for environmental and technological processes. In: Shaukat S (ed) Progress in biomass and bioenergy production. InTech, Rijeka, Croatia, pp 151–176

    Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J Biol Sci 20:121–129

    Article  CAS  Google Scholar 

  • Peijnenburg W, Sneller E, Sijm D, Lijzen J, Traas T, Verbruggen E (2004) Implementation of bioavailability in standard setting and risk assessment. Environ Sci 11:141–149

    Google Scholar 

  • Perelo LW (2010) Review: In situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177:81–89

    Article  CAS  Google Scholar 

  • Poljsak B, Pócsi I, Raspor P, Pesti M (2009) Interference of chromium with biological systems in yeasts and fungi: a review. Sci Technol 49:1–16

    Google Scholar 

  • Prasad MNV, de Oliveira Freitas HM (2003) Metal hyperaccumulation in plants - Biodiversity prospecting for phytoremediation technology. Electron J Biotech 6:285–321

    Article  Google Scholar 

  • Prola LDT, Acayanka E, Lima EC, Umpierres CS, Vaghetti JCP, Santos WO, Laminsi S, Djifon PT (2013) Comparison of Jatropha curcas shells in natural form and treated by non-thermal plasma as biosorbents for removal of Reactive Red 120 textile dye from aqueous solution. Ind Crops Prod 46:328–340

    Article  CAS  Google Scholar 

  • Qaiser S, Saleemi AR, Ahmad MM (2007) Heavy metal uptake by agro based waste materials. Electron J Biotech 10:409–416

    Article  CAS  Google Scholar 

  • Rajeshkannan R, Rajasimman M, Rajamohan N (2010) Optimization, equilibrium and kinetics studies on sorption of Acid Blue 9 using brown marine algae Turbinaria conoides. Biodegradation 21:713–727

    Article  CAS  Google Scholar 

  • Rasool K, Lee DS (2015) Characteristics, kinetics and thermodynamics of Congo Red biosorption by activated sulfidogenic sludge from an aqueous solution. Int J Environ Sci Technol 12:571–580

    Article  CAS  Google Scholar 

  • Reema RM, Saravanan P, Dharmendira Kumara M, Renganathan S (2011) Accumulation of methylene blue dye by growing Lemna minor. Separ Sci Technol 46:1052–1058

    Article  CAS  Google Scholar 

  • Robalds A, Naja GM, Klavins M (2015) Highlighting inconsistencies regarding metal biosorption. J Hazard Mater. doi:10.1016/j.jhazmat.2015.10.042

    Google Scholar 

  • Sahmoune MN, Louhab K, Boukhiar A (2011) Advanced biosorbents materials for removal of chromium from water and wastewaters. Environ Prog Sustain Energy 30:284–293

    Article  CAS  Google Scholar 

  • Saikaew W, Kaewsarn P, Saikaew W (2009) Pomelo peel: agricultural waste for biosorption of cadmium ions from aqueous solutions. World Acad Sci Eng Technol 56:287–291

    Google Scholar 

  • Sayara T, Čvančarová M, Cajthaml T, Sarrà M, Sánchez A (2015) Anaerobic bioremediation of PAH–contaminated soil: assessment of the degradation of contaminants and biogas production under thermophilic and mesophilic conditions. Environ Engg Manage J 14:153–165

    CAS  Google Scholar 

  • Seshadri B, Bolan NS, Naidu R (2015) Rhizosphere-induced heavy metal(loid) transformation in relation to bioavailability and remediation. J Soil Sci Plant Nutr 15:524–548

    CAS  Google Scholar 

  • Shroff KA, Vaidya VK (2012) Effect of pre-treatments on the biosorption of Chromium (VI) ions by the dead biomass of Rhizopus arrhizus. J Chem Technol Biotechnol 87:294–304

    Article  CAS  Google Scholar 

  • Silva B, Figueiredo H, Neves IC, Tavares T (2009) The role of pH on Cr(VI) reduction and removal by Arthrobacter viscosus. Int J Chem Biol Engg 2:100–103

    CAS  Google Scholar 

  • Siva Kiran RR, Madhu GM, Satyanarayana SV, Bindiya P (2012) Bioaccumulation of cadmium in blue green algae Spirulina (Arthrospira) Indica. J Bioremed Biodegrad 3:141

    CAS  Google Scholar 

  • Sivasamy A, Sundarabal N (2011) Biosorption of an azo dye by Aspergillus niger and Trichoderma sp. fungal biomasses. Curr Microbiol 62:351–357

    Article  CAS  Google Scholar 

  • Somasekhara RMC, Sivaramakrishna L, Varada RA (2012) Use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo Red) from aqueous medium. J Hazard Mater 203–204:118–127

    Article  CAS  Google Scholar 

  • Tavares T, Figueiredo H (2012) Biosorption of heavy metals – new perspectives. In: Mohee R, Mudhoo A (eds) Bioremediation and sustainability. Research and applications. Wiley, Inc./Scrivener Publishing LLC, Hoboken/Salem, pp 261–284

    Chapter  Google Scholar 

  • Tlustoš P, Száková J, Hrubý J, Hartman I, Najmanová J, Nedělník J, Pavlíková D, Batysta M (2006) Removal of As, Cd, Pb, and Zn from contaminated soil by high biomass producing plants. Plant Soil Environ 52:413–423

    Google Scholar 

  • Todorciuc T, Bulgariu L, Popa VI (2015) Adsorption of Cu(II) from aqueous solution on wheat straw lignin: equilibrium and kinetic studies. Cell Chem Technol 49:439–447

    CAS  Google Scholar 

  • Ungureanu G, Santos S, Boaventura R, Botelho C (2015) Biosorption of antimony by brown algae S. muticum and A. nodosum. Environ Eng Manag J 14:455–463

    CAS  Google Scholar 

  • Vaigan AA, Moghaddam MRA, Hashemi H (2010) Aerobic sequencing batch reactor system with granular activated carbon for the treatment of wastewater containing a reactive dye. Environ Eng Manag J 9:407–411

    CAS  Google Scholar 

  • Vijayaraghavan K, Yun Y-S (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 28:266–291

    Article  CAS  Google Scholar 

  • Volesky B (1990) Biosorption and biosorbents. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Inc., Boca Raton

    Google Scholar 

  • Volf I, Ghislaine Rakoto N, Bulgariu L (2015) Valorization of Pistia stratiotes biomass as biosorbent for Lead(II) ions removal from aqueous media. Sep. Sci Technol 50:1577–1586

    CAS  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnol Adv 24:427–451

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  CAS  Google Scholar 

  • Witek-Krowiak A, Szafran RG, Modelski S (2011) Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination 265:126–134

    Article  CAS  Google Scholar 

  • Zaki MS, Hammam AM (2014) Aquatic pollutants and bioremediations [Review]. Life Sci J 11:362–369

    Google Scholar 

  • Zeng X-x, Chai L-y, Tang J-x, Liu X-d, Yang Z-h (2013) Taxonomy characterization and cadmium biosorption of fungus strain. Trans Nonferrous Met Soc China 23:2759–2765

    Article  CAS  Google Scholar 

  • Zhou Y, Zhang L, Cheng Z (2015) Removal of organic pollutants from aqueous solution using agricultural wastes: A review. J Mol Liq 212:739–762

    Article  CAS  Google Scholar 

  • Zuykov M, Pelletier E, Harper DAT (2013) Bivalve mollusks in metal pollution studies: From bioaccumulation to biomonitoring. Chemosphere 93:201–208

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was elaborated with the support of a grant of the Romanian National Authority for Scientific Research, CNCS–UEFISCDI, project number PN-II-ID-PCE-2011-3-0559, Contract 265/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raluca-Maria Hlihor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hlihor, RM., Apostol, LC., Gavrilescu, M. (2017). Environmental Bioremediation by Biosorption and Bioaccumulation: Principles and Applications. In: Anjum, N., Gill, S., Tuteja, N. (eds) Enhancing Cleanup of Environmental Pollutants. Springer, Cham. https://doi.org/10.1007/978-3-319-55426-6_14

Download citation

Publish with us

Policies and ethics