Skip to main content

The High Mountain Flora and Vegetation

  • Chapter
  • First Online:
The Vegetation of the Iberian Peninsula

Abstract

The orophile flora of the Iberian Peninsula is analysed in order to extract the basic biogeographical patterns of the plant diversity contained in this group. A total of 999 taxa at the level of species and subspecies have been identified as the Iberian cold-adapted plants living in the mountains, representing 15% of the total Iberian flora. Their distribution patterns across the six main mountain ranges, including all the ranges with significant areas above 1600 m, have been analysed. Species richness is correlated with the area above that altitude. Four main floristic elements have been distinguished within the orophile flora: the Arctic-Boreal, the European Orophile, the Endemic and the Iberian-North African. The first two elements are mainly spread across the northern mountain ranges in a pattern symmetrical to the distribution of the Iberian-North African element. The Endemic element is the largest one and is better represented in the ranges with the highest summits. After an analysis of the taxonomic diversity (TD) of all ranges, it is evident that, if phylogenetic diversity is taken into account, the southern ranges are less diverse than expected, in contrast to the northern ones, in spite of the fact that they host a larger number of endemics. This means that, even when an element contains many species, biodiversity values may be diminished in case those species are phylogenetically related. This particularly concerns the Endemic element, composed mainly of narrowly related geo-vicariants. Concerning the vegetation, the communities inhabiting rupicolous habitats such as crevices and screes, as well as the psychro-xerophilous grasslands, are the main contributors to this flora. The biogeographical distribution of the vegetation units follows a north-south pattern, with a preference for the siliceous mountains in the Boreal and Temperate units and for the calcareous mountains in the case of the Mediterranean units. A number of Iberian units has their optimum in the central siliceous ranges, such as the Nardus grasslands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott RJ, Brochmann C (2003) History and evolution of the arctic flora: in the footsteps of Eric Hultén. Mol Ecol 12:299–313

    Article  PubMed  Google Scholar 

  • Aedo C, Medina L, Fernández-Albert M (2013) Species richness and endemicity in the Spanish vascular flora. Nord J Bot 31:478–488

    Article  Google Scholar 

  • Aeschlimann D, Lauber K, Moser DM, Theurillat J-P (2004) Flora Alpina, 3 vols. Verlag Haupt, Bern

    Google Scholar 

  • Aeschlimann D, Rasolofo N, Theurillat J-P (2011) Analyse de la flore des Alpes. 2: biodiversité et chorologie. Candollea 66(2):225–253

    Article  Google Scholar 

  • Barthlott W, Lauer W, Placke A (1996) Global distribution of species diversity in vascular plants: towards a world map of phytodiversity. Erdkunde 50:317–327

    Article  Google Scholar 

  • Blanca G, Cabezudo B, Cueto M, Fernández López C, Morales Torres C (2009) Flora Vascular de Andalucía Oriental, 4 vols. Junta de Andalucía. Sevilla, Consejería de Medio Ambiente

    Google Scholar 

  • Čarni A, Matevski V, Juvan N, Kostadinovski M, Košir P, Marinšek A, Paušič A, Šilc U (2016) Transition along gradient from warm to mesic temperate forests evaluated by GAMM. J Plant Ecol 9:410–433. doi:10.1093/jpe/rtv069

    Article  Google Scholar 

  • Castroviejo S (1997) The Flora Iberica project: results and problems. Lagascalia 19(1):371–380

    Google Scholar 

  • Castroviejo S et al (eds) (1986–2016) Flora iberica, 19 vols. Real Jardín Botánico. CSIC, Madrid

    Google Scholar 

  • Cires E, Fernández Prieto JA (2012) The Iberian endemic species Ranunculus cabrerensis Rothm.: an intricate history in the Ranunculus parnassifolius L. polyploid complex. Plant Syst Evol 298:121–138

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Clarke KR, Warwick RM (1998) A taxonomic distinctness index and its statistical properties. J Appl Ecol 35:523–531

    Article  Google Scholar 

  • Comes HP, Kadereit JW (2003) Spatial and temporal patterns in the evolution of the flora of the European alpine system. Taxon 52:451–462

    Article  Google Scholar 

  • de Bolòs O, Vigo J (1984–2001) Flora dels Països Catalans. 4 vols. Ed. Barcino, Barcelona

    Google Scholar 

  • Favarger C (1972) Endemism in the montane floras of Europe. In: Valentine DH (ed) Taxonomy, phytogeography and evolution. Acedemic, London/New York, pp 191–204

    Google Scholar 

  • Favarger C (1995) Flore et végétation des Alpes, 3rd edn. 2 vols. Delachaux et Niestlé, Lausanne

    Google Scholar 

  • Favarger C, Küpfer P (1968) Contribution à la cytotaxonomie de la flore alpine des Pyrénées. Collect Bot Barcelona 7(1):325–357

    Google Scholar 

  • Fernández-Calzado R, Ghosn RD, Gottfried M, Kazakis G, Molero-Mesa J, Pauli H, Merzouki A (2013) Patterns of endemism along an elevation gradient in Sierra Nevada (Spain) and Lefka Ori (Crete, Greece). Pirineos, Revista de Ecología de Montaña 168:7–24

    Article  Google Scholar 

  • Font X, Pérez-García N, Biurrun I, Fernández-González F, Lence C (2012) The Iberian and Macaronesian Vegetation Information System (SIVIM, www.sivim.info), five years of online vegetation’s data publishing. Plant Sociol 49:89–95

    Google Scholar 

  • Giménez E, Melendo M, Valle F, Gómez-Mercado F, Cano E (2004) Endemic flora biodiversity in the south of the Iberian Peninsula: altitudinal distribution, life forms and dispersal modes. Biodivers Conserv 13:2641–2660

    Article  Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond B 359:183–195

    Article  CAS  Google Scholar 

  • Hsü KJ, Ryan WBF, Cita MB (1973) Late Miocene dessication of the Mediterranean. Nature 242:240–244

    Article  Google Scholar 

  • Hulten E (ed) (1961) Alpigenous and arctogenous plants. Ranges of circumpolar arctic-montane plants. Recent Advances in Botany 1, Toronto

    Google Scholar 

  • Kadereit JW, Griebeler EM, Comes HP (2004) Quaternary diversification in European alpine plants: pattern and process. Philos Trans R Soc Lond B 359:265–274

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life. Functional plant ecology of high mountain ecosystems. Springer, Berlin

    Google Scholar 

  • Kovar-Eder J, Kvaček Z, Martinetto E, Roiron P (2006) Late Miocene to early Pliocene vegetation of southern Europe (7-4 Ma) as reflected in the megafossil plant record. Palaeogeogr Palaeoclimatol Palaeoecol 238:321–339

    Article  Google Scholar 

  • Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652–655

    Article  CAS  Google Scholar 

  • Kropf M, Comes HP, Kadereit JW (2006) Long-distance dispersal vs vicariance: the origin and genetic diversity of alpine plants in the Spanish Sierra Nevada. New Phytol 172:169–184

    Article  PubMed  Google Scholar 

  • Kropf M, Comes HP, Kadereit JW (2008) Causes of the genetic architecture of south-west European high mountain disjuncts. Plant Ecol Divers 2:217–228

    Article  Google Scholar 

  • Küpfer P (1974) Recherches sur les liens de parenté entre la flore orophile des Alpes et celle des Pyrénées. Boissieria 23:1–322

    Google Scholar 

  • Loidi J, Campos JA, García-Baquero G, Biurrun I, García-Mijangos I, Herrera M (2012) Flora und Vegetation in Hochgebirgen der Iberischen Halbinsel: Eine biogeographische Untersuchung. Berichte der Reinhold-Tüxen-Gesellschaft 24:163–177

    Google Scholar 

  • Loidi J, Campos JA, Herrera M, Biurrun I, García-Mijangos I, García-Baquero G (2015) Eco-geographical factors affecting richness and phylogenetic diversity patterns of high-mountain flora in the Iberian Peninsula. Alp Bot 125(2):137–146

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, p 205

    Google Scholar 

  • Moreno-Saiz JC, Sainz-Ollero H (1992) Atlas corológico de las monocotiledóneas endémicas de la Península Ibérica e islas Baleares. Col. Técnica. ICONA, Madrid

    Google Scholar 

  • Ozenda P (1985) La végétation de la chaîne alpine dans l’espace montagnard européen. Masson, Paris

    Google Scholar 

  • Ozenda P (1995) L’endémisme au niveau de l’ensemble du Système alpin. Acta Bot Gallica 142:753–762

    Article  Google Scholar 

  • Ozenda P (2009) On the genesis of the plant population in the Alps: new or critical aspects. Compte Redus Biologies 332(12):1092–1103

    Article  Google Scholar 

  • Ozenda P, Borel J-L (1995) Biocenotic diversity patterns in the alpine and subalpine belt of the mountains in western and central Europe. Colloques Phytosoc 23:723–735

    Google Scholar 

  • Pawłowski B (1970) Remarques sur l’endémisme dans la flore des Alpes et des Carpates. Vegetatio 21:181–243

    Article  Google Scholar 

  • Peñas J, Pérez-García FJ, Mota JF (2005) Patterns of endemic plants and biogeography of the Baetic high mountains (south Spain). Acta Botanica Gallica 152(3):347–360

    Article  Google Scholar 

  • Rivas-Martínez S, Asensi A, Molero J, Valle F (1991) Endemismos vasculares de Andalucía. Rivers 6:5–76

    Google Scholar 

  • Rivas-Martínez S et al (2007) Mapa de series, geoseries y geopermaseries de vegetación de España (Memoria del Mapa de vegetación de España) Parte I. Itinera Geobot 17:5–436

    Google Scholar 

  • Sainz-Ollero H, Hernández-Bermejo E (1985) Sectorización fitogeográfica de la Península Ibérica e islas Baleares: la contribución de su endemoflora como criterio de semejanza. Candollea 40:485–508

    Google Scholar 

  • Somerfield PJ, Clarke R, Warwick RM, Dulvy NK (2008) Average functional distinctness as ameasure of the composition of assemblages. ICES J Mar Sci 65:1462–1468

    Article  Google Scholar 

  • Stebbins L (1984) Polyploidy and the distribution of the arcticalpine flora: new evidence and a new approach. Bot Helv 94:1–13

    Google Scholar 

  • Stebbins L (1985) Polyploidy, hybridization, and the invasion of new habitats. Ann Mo Bot Gard 72:824–832

    Article  Google Scholar 

  • Suc P (1984) Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307:429–432

    Article  Google Scholar 

  • Warwick M, Clarke KR (1995) New 'biodiversity' measures reveal a decrease in taxonomic distinctness with increasing stress. Mar Ecol-Prog Ser 129:301–305

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Loidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Loidi, J., Biurrun, I., García-Mijangos, I., García-Baquero, G., Herrera, M., Campos, J.A. (2017). The High Mountain Flora and Vegetation. In: Loidi, J. (eds) The Vegetation of the Iberian Peninsula. Plant and Vegetation, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-54867-8_9

Download citation

Publish with us

Policies and ethics