Skip to main content

Micropropagation of Cannabis sativa L.—An Update

  • Chapter
  • First Online:
Cannabis sativa L. - Botany and Biotechnology

Abstract

Cannabis is one of the oldest economically important plant yielding fiber, food and medicine. It is a natural source of Δ9-tetrahydrocannabinol (THC) and Cannabidiol (CBD). These two molecules have a tremendous therapeutic potential and commercial value in the pharmaceutical area. Cannabis is a highly heterozygous species. Being dioceous (male and female flowers appear on two different plants) and wind pollinated species, it is difficult to maintain the chemical profile of biomass product, if grown from seed. Plant to plant variation is observed even though plants are grown from seeds obtained from a single female plant. Therefore, to maintain consistency in the end product, elite female plants are screened and multiplied using vegetative propagation and/or tissue culture. Micro propagation can play a vital role in the conservation of elite Cannabis clones and rapid multiplication of novel germplasm. On the other hand, it can also be used in genetic modification for the enhanced cannabinoid production. Research on in vitro propagation of Cannabis has resulted in the development of protocols for callus production, cell suspension cultures, agrobacterium mediated hairy root cultures and regeneration of plants. This chapter provides an overview of in vitro propagation of Cannabis and addresses the current applications of modern biotechnology in propagation of elite Cannabis plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams DI, Jay CA, Shade SB, Vizoso H, Reda H, Press S, Kelly ME, Rowbotham MC, Petersen KL (2007) Cannabis in painful HIV-associated sensory neuropathy: a randomized placebo-controlled trial. Neurology 68:515–521

    Article  CAS  PubMed  Google Scholar 

  • Bing X, Ning L, Jinfeng T, Nan G (2007) Rapid tissue culture method of Cannabis sativa for industrial uses. CN 1887043 A 20070103 Patent pp 9

    Google Scholar 

  • Braemer R, Paris M (1987) Biotransformation of cannabinoids by a cell suspension culture of Cannabis sativa L. Plant Cell Rep 6(2):150–152

    CAS  PubMed  Google Scholar 

  • Braut-Boucher F, Paillard N, Phytotherapie P Me (1985) Detection of volatile products in tissue cultures of Cannabis sativa L. strains. Plantes Medicinales et Phytotherapie 19(1):22–28

    Google Scholar 

  • Casano S and Grassi G (2009) Evaluation of media for hemp (Cannabis sativa L.) in vitro propagation. Italus Hortus 16(2):109–112

    Google Scholar 

  • Chandra S, Lata H, Khan I, ElSohly MA (2013) The role of biotechnology in Cannabis sativa propagation for the production of phytocannabinoids. In: Chandra S, Lata H, Varma A (eds) Biotechnology for Medicinal Plants—Micropropagation and Improvement. Springer-Verlag, Berlin, Heidelberg, pp 123–148

    Google Scholar 

  • Chandra S, Lata H, Khan I, ElSohly MA (2010) Propagation of elite Cannabis sativa for the production of D9-Tetrahydrocannabinol (THC) using biotechnological tools. In: Rajesh A (ed) Medicinal Plant Biotechnology. CABI, UK, pp 98–114

    Google Scholar 

  • Chaohua C, Gonggu Z, Lining Z, Chunsheng G, Qing T, Jianhua C, Xinbo G, Dingxiang P, Jianguang S (2016) A rapid shoot regeneration protocol from the cotyledons of hemp (Cannabis sativa L.). Ind Crops Prod 83:61–65

    Google Scholar 

  • Duke JA, Wain KK (1981) Medicinal Plants of the world, Computer index with more than 85,000 entries. In: Duke JA (ed) Handbook of Medicinal Herbs CRC press. Florida, Boca Raton, p 96

    Google Scholar 

  • Farag S, Kayser O (2015) Cannabinoids production by hairy root cultures of Cannabis sativa L. Am J Plant Sci 6:1874–1884

    Article  CAS  Google Scholar 

  • Feeney M, Punja ZK (2003) Tissue culture and Agrobacterium mediated transformation of hemp (Cannabis sativa L.). In vitro Cell Dev-Pl 39 (6):578–585

    Google Scholar 

  • Fisse J, Andres J (1985) Organogenesis and biosynthesis in an in vitro culture of Cannabis sativa L. Boletin da Academia Galega de Ciencias 4:57–67

    CAS  Google Scholar 

  • Fisse J, Braut F, Cosson L, Paris M (1981) Étude in vitro des capacités organogénétiques de tissus de Cannabis sativa L.; Effet de différentes substances de croissance. Plantes Médicinales et Phytotherapi 15:217–223

    CAS  Google Scholar 

  • Flores-Sanchez IJ, Pec J, Fei J, Hae Choi Y, Dusek J, Verpoorte R (2009) Elicitation studies in cell suspension cultures of Cannabis sativa L. J Biotechnol 143:157–168

    Article  CAS  PubMed  Google Scholar 

  • Francoise BB, Vincent P (1981) In vitro tissue culture of different chemical types of Cannabis sativa L. Comptes Rendus des Seances de l’Academie des Sciences, Serie 3: Sciences de la Vie 292(13):833–838

    Google Scholar 

  • George L, Eapen S (1994) Organogenesis and embryogenesis from diverse explants in Pigeonpea (Cajanus cajan L). Plant Cell Rep 13(7):417–420

    Article  CAS  PubMed  Google Scholar 

  • Hartsel SC, Loh WHT, Robertson LW (1983) Biotransformation of cannabidiol to Cannabielsoin by suspension cultures of Cannabis sativa and Saccharum officinarum. Planta Med 48(1):17–19

    Article  CAS  PubMed  Google Scholar 

  • Heitrich A, Binder M (1982) Identification of (3R, 4R)-delta 1(6)—tetrahydrocannabinol as an isolation artefact of cannabinoid acids formed by callus cultures of Cannabis sativa L. Experientia 38(8):898–899

    Article  CAS  Google Scholar 

  • Hemphill JK, Turner JC, Mahlberg PG (1978) Studies on growth and cannabinoid composition of callus derived from different strains of Cannabis sativa. Lloydia 41:453–462

    CAS  Google Scholar 

  • Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell, Tissue Organ Cult 33:105–119

    Article  CAS  Google Scholar 

  • Itokawa H, Takeya K, Akasu M (1975) Studies on the constituents isolated from the callus of Cannabis sativa L. Shoyakugaku Zasshi 29(2):106–112

    CAS  Google Scholar 

  • Itokawa H, Takeya K, Mihashi S (1977) Biotransformation of cannabinoid precursors and related alcohols by suspension cultures of callus induced from Cannabis sativa L. Chem Pharm Bull 25(8):1941–1946

    Article  CAS  PubMed  Google Scholar 

  • Jekkel Z, Heszky LE, Ali AH (1989) Effect of different cryoprotectants and transfer temperatures on the survival rate of hemp (Cannabis sativa L.) cell suspension in deep freezing. Acta Biol Hung 40(1–2):127–136

    CAS  PubMed  Google Scholar 

  • Jiang Y, Zunmin XIA, Tang Y, Han Q, Han C (2015) Preliminary studies on the tissue culture of Cannabis sativa L. (Industrial hemp). Agricultural. Sci Technol 16(5):923–925

    Google Scholar 

  • John KH, Jocelyn CT, Paul GM (1978) Studies on growth and cannabinoid composition of callus derived from different strains of Cannabis sativa L. Lloydia 41(5):453–462

    Google Scholar 

  • Jones MP, Yi Z, Murch SJ, Saxena PK (2007) Thidiazuron induced regeneration of Echinacea purpurea L.: micropropagation in solid and liquid culture systems. Plant Cell Rep 26(1):13–19

    Article  CAS  PubMed  Google Scholar 

  • Lata H, Chandra S, Khan I, ElSohly M (2009a) Thidiazuron induced high-frequency direct shoot organogenesis of Cannabis sativa L. In vitro Cell Dev-Pl 45(1):12–19

    Article  CAS  Google Scholar 

  • Lata H, Chandra S, Khan IA, ElSohly MA (2009b) Propagation through alginate encapsulation of axillary buds of Cannabis sativa L. an important medicinal plant. Physiol Mol Biol Plants 15(1):79–86

    Google Scholar 

  • Lata H, Chandra S, Khan IA, ElSohly MA (2010) High frequency plant regeneration from leaf derived callus of high delta(9)-tetrahydrocannabinol yielding Cannabis sativa L. Planta Med 76(14):1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Lata H, Chandra S, Mehmedic Z, Khan IA, ElSohly MA (2012) In vitro germplasm conservation of high delta (9)-tetrahydrocannabinol yielding elite clones of Cannabis sativa L. under slow growth conditions. Acta Physiol Plant 34(2):743–750

    Article  CAS  Google Scholar 

  • Lata H, Chandra S, Techen N, Khan IA, ElSohly MA (2016) In vitro mass propagation of Cannabis sativa L.: A protocol refinement using novel aromatic cytokinin meta-topolin and the assessment of eco-physiological, biochemical and genetic fidelity of micropropagated plants. J Appl Res Med Aromat Plants 3:18–26

    Article  Google Scholar 

  • Lineberger RD (1983) Shoot proliferation, rooting and transplant survival of tissue-culture ‘Hally-Jolivette’ cherry. HortScience 18:182–185

    Google Scholar 

  • Lisson SN, Mendham NJ, Carberry PS (2000) Development of a hemp (Cannabis sativa L.) simulation model 2. The flowering response of two hemp cultivars to photoperiod. Aust J Exp Agr 4:413–417

    Article  Google Scholar 

  • Liu C, Wang Y, Guo C, Ouyang F, Ye H, Li G (1998) Enhanced production of artemisinin by Artemisia annua L. hairy root cultures in a modified inner-loop airlift bioreactor. Bioprocess Eng 19:389–392

    Google Scholar 

  • Loh WHT, Hartsel SC, Robertson LW (1983) Tissue culture of Cannabis sativa L. and in vitro biotransformation of phenolics. Zeitschrift fuer Pflanzenphysiologie 111(5):395–400

    Google Scholar 

  • Long LE, Malone DT, Taylor DA (2005) The pharmacological actions of cannabidiol. Drugs of the Future 30(7):747

    Article  CAS  Google Scholar 

  • Mackinnon L, MCdougall G, Aziz N, Millam S (2000) Progress towards transformation of fibre hemp, 84–86. Scottish Crop Research Institute Annual Report. Invergowrie, Dundee: Scottish Crop Research Institute

    Google Scholar 

  • Mandolino G, Ranalli P (1999) Advances in biotechnological approaches for hemp breeding and industry. Advances in hemp research. Haworth, New York

    Google Scholar 

  • Mechoulam S, Lander N, Dikstein S, Carlini EA, Blumenthal M (1976) On the therapeutic possibilities of some cannabinoids. In: Cohen S, Stillman R (eds) The therapeutic potential of marihuana. Plenum Press, New York pp 36

    Google Scholar 

  • Meijer EPM, Soest LJM (1992) The CPRO Cannabis collection. Euphytica 62:201–211

    Article  Google Scholar 

  • Meijer EPM, Van der Kamp HJ, van Eeuwijk FA (1992) Characterisation of Cannabis accessions with regard to cannabinoid content in relation to other plant characters. Euphytica 62:187–200

    Article  Google Scholar 

  • Movahedi M, Ghasemi-Omran VO, Torabi S (2015) The effect of different concentrations of TDZ and BA on in vitro regeneration of Iranian Cannabis (Cannabis sativa) using cotyledon and epicotyl explants. J Plant Mol Breed 3(2):20–27

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Parveen S, Shahzad A (2010) TDZ-induced high frequency shoot regeneration in Cassia sophera Linn. via cotyledonary node explants. Physiol Mol Biol Plant 16:201–206

    Article  Google Scholar 

  • Plawuszewski M, Lassocinski W, Wieglus K (2006) Regeneration of polish cultivars of monoecious hemp (Cannabis sativa L.) grown in vitro. In: Kozlowski R, Gennady E, Pudel F (eds) Renewable resources and plant biotechnology pp 149–154

    Google Scholar 

  • Pryce G, Baker D (2005) Emerging properties of cannabinoid medicines in management of multiple sclerosis. Trends Neurosci 28(5):272–276

    Article  CAS  PubMed  Google Scholar 

  • Quimby MW, Doorenbos NJ, Turner CE, Masoud A (1973) Mississippi-Grown Marihuana-Cannabis sativa Cultivation and observed Morphological Variations. Econ Bot 27:117–127

    Article  Google Scholar 

  • Richez-Dumanois C, Braut-Boucher F, Cosson L, Paris M (1986) Multiplication vegetative in vitro du chanvre (Cannabis sativa L.) application a la conservation des clones selectionnes. Agronomie 6:487–495

    Article  Google Scholar 

  • Sirikantaramas S, Taura F, Morimoto S, Shoyama Y (2007) Recent advances in Cannabis sativa research: biosynthetic studies and its potential in biotechnology. Curr Pharma Biotechnol 8(4):237–243

    Article  CAS  Google Scholar 

  • Slusarkiewicz-Jarzina A, Ponitka A, Kaczmarek Z (2005) Influence of cultivar, explant source and plant growth regulator on callus induction and plant regeneration of Cannabis sativa L. Acta Biol Craco Series Bot 47(2):145–151

    Google Scholar 

  • Small E, Marcus D (2002) Tetrahydrocannabinol levels in hemp (Cannabis sativa) germplasm resources. Econ Bot 57:545–558

    Article  Google Scholar 

  • Toivonen L (1993) Utilization of hairy root cultures for production of secondary metabolite. Biotechnol Prog 9:12–20

    Article  CAS  Google Scholar 

  • Turner CE, Elsohly MA, Boeren EG (1980) Constituents of Cannabis sativa L.17. A Review of the natural constituents. J Nat Prod 43(2):169–234

    Article  CAS  PubMed  Google Scholar 

  • Veliky IA, Martin SM (1970) A fermenter for plant suspension cultures. Canadian J Microbiol 16:223–226

    Article  CAS  Google Scholar 

  • Veliky IA, Genest K (1972) Growth and metabolites of Cannabis sativa cell suspension cultures. Lloydia 35(4):450–456

    CAS  PubMed  Google Scholar 

  • Verzar-Petri G, Ladocsy T, Oroszlan P (1982) Differentiation and production of cannabinoids in tissue cultures of Cannabis sativa L. Acta Botanica Academiae Scientiarum Hungaricae 28(1–2):279–290

    Google Scholar 

  • Vogelmann AF, Turner JC, Mahlberg PG (1988) Cannabinoid composition in seedlings compared to adult plants of Cannabis sativa. J Nat Prod 51:1075–1079

    Article  CAS  Google Scholar 

  • Wahby I, Arraez-Roman D, Segura-Carretero A, Ligero F, Caba JM, Fernandez-Gutierrez A (2006) Analysis of choline and atropine in hairy root cultures of Cannabis sativa L. by capillary electrophoresis-electrospray mass spectrometry. Electrophoresis 27:2208–2215

    Article  CAS  PubMed  Google Scholar 

  • Wahby I, Caba JM, Ligero F (2013) Agrobacterium infection of hemp (Cannabis sativa L.): establishment of hairy root cultures. J Plant Interact 8(4):312–320

    Google Scholar 

  • Wang R, He LS, Xia B, Tong JF, Li N, Peng F (2009) A Micropropagation system for cloning of Hemp (Cannabis sativa L.) by shoot tip culture. Pakistan J Bot 41(2):603–608

    Google Scholar 

  • Wielgus K, Luwanska A, Lassocinski W, Kaczmarek Z (2008) Estimation of Cannabis sativa L. tissue culture conditions essential for callus induction and plant regeneration. J Nat Fib 5(3):199–207

    Google Scholar 

  • Yoshimatsu K, Iida O, Kitazawa T, Sekine T, Kojoma M, Makino Y, Kiuchi F (2004) Growth characteristics of Cannabis sativa L. cultivated in a phytotron and in the field. Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku 122:16–20

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institute on Drug Abuse (NIDA), National Institute of Health (NIH), Department of Health and Human Services, USA, Contract No. N01DA-15-7793.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. ElSohly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lata, H., Chandra, S., Khan, I.A., ElSohly, M.A. (2017). Micropropagation of Cannabis sativa L.—An Update. In: Chandra, S., Lata, H., ElSohly, M. (eds) Cannabis sativa L. - Botany and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-54564-6_13

Download citation

Publish with us

Policies and ethics