Skip to main content

Mathematization in Synthetic Biology: Analogies, Templates, and Fictions

  • Chapter
  • First Online:
Mathematics as a Tool

Part of the book series: Boston Studies in the Philosophy and History of Science ((BSPS,volume 327))

Abstract

In his famous article “The Unreasonable Effectiveness of Mathematics in the Natural Sciences” Eugen Wigner argues for a unique tie between mathematics and physics, invoking even religious language: “The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve” (Wigner 1960: 1). The possible existence of such a unique match between mathematics and physics has been extensively discussed by philosophers and historians of mathematics (Bangu 2012; Colyvan 2001; Humphreys 2004; Pincock 2012; Putman 1975; Steiner 1998). Whatever the merits of this claim are, a further question can be posed with regard to mathematization in science more generally: What happens when we leave the area of theories and laws of physics and move over to the realm of mathematical modeling in interdisciplinary contexts? Namely, in modeling the phenomena specific to biology or economics, for instance, scientists often use methods that have their origin in physics. How is this kind of mathematical modeling justified?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a discussion on material and formal analogies, see Hesse (1966), and Knuuttila and Loettgers (2014).

  2. 2.

    This notion of a “reasonably self-contained system” bears an interesting link to the theme of fiction discussed below in Sect. 5.

  3. 3.

    For Lotka-Volterra equations as computational templates, see Knuuttila and Loettgers (2011, 2016).

  4. 4.

    Other scientists such as Brian Goodwin take the binding of the RNAp into account. This makes the differential equations more difficult by adding a further variable.

  5. 5.

    On the notion of an epistemic tool, see Knuuttila (2011).

  6. 6.

    For example, the properties and dynamic features of network motifs describing recurrent structures in genetic networks (e.g. feedforward and feedback loops) can be analyzed by making use of the Michaelis-Menten equations (Berg et al. 2002).

  7. 7.

    Personal communication by Michael Elowitz.

  8. 8.

    Even if all the active sites of the proteins are occupied by repressors one observes some production of proteins, which is expressed by α 0.. This is what is meant by leakiness.

  9. 9.

    This draws synthetic modeling close to simulation modeling, which brings to mathematical modeling exploratory and experimental features (e.g., Lenhard 2007).

References

  • Alon, U. (2006). An introduction to systems biology. London: Chapman & Hall/CRC Mathematical and Computational Biology.

    Google Scholar 

  • Bangu, S. (2012). The applicability of mathematics in science: Indispensability and ontology. Basingstoke: Palgrave Macmillan.

    Google Scholar 

  • Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Biochemistry. New York: W. H. Freeman.

    Google Scholar 

  • Bujara, M., Schümperli, M., Pellaux, R., Heinemann, M., & Panke, S. (2011). Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis. Nature Chemical Biology, 7, 271–277.

    Article  CAS  Google Scholar 

  • Çağatay, T., Turcotte, M., Elowitz, M. B., Garcia-Ojalvo, J., & Suel, G. M. (2009). Architecture-dependent noise discriminates functionally analogous differentiation circuits. Cell, 139(3), 1–11.

    Google Scholar 

  • Chalfie, M., Yuan, T., Euskirchen, G., Ward, W. W., & Prasher, D. C. (1994). Green fluorescent protein as a marker for gene expression. Science, 263(5148), 802–805.

    Article  CAS  Google Scholar 

  • Church, G. M. (2005). From systems biology to synthetic biology. Molecular Systems Biology, 1.

    Google Scholar 

  • Colyvan, M. (2001). The indispensability of mathematics. New York: Oxford University Press.

    Book  Google Scholar 

  • Elowitz, M. B., & Leibler, S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature, 403(6767), 335–338.

    Article  CAS  Google Scholar 

  • Elowitz, M. B., & Lim, W. A. (2010). Build life to understand it. Nature, 468(7326), 889–890.

    Article  CAS  Google Scholar 

  • Elowitz, M. B., Surette, M. G., Wolf, P.-E., Stock, J., & Leibler, S. (1997). Photoactivation turns green fluorescent protein red. Current Biology, 7(10), 809–812.

    Article  CAS  Google Scholar 

  • Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2000). Stochastic gene expression in a single cell. Science, 297(5584), 1183–1186.

    Article  Google Scholar 

  • Godfrey-Smith, P. (2009). Models and fictions in science. Philosophical Studies, 143(1), 101–116.

    Article  Google Scholar 

  • Goodwin, B. (1963). Temporal organization in cells. London, New York: Academic Press.

    Google Scholar 

  • Hesse, M. B. (1966). Models and analogies in science. Notre Dame: Notre Dame University Press.

    Google Scholar 

  • Humphreys, P. (2004). Extending ourselves: Computational science, empiricism, and scientific method. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Jacob, F., & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 3(3), 318–356.

    Article  CAS  Google Scholar 

  • Khalil, A. S., & Collins, J. J. (2010). Synthetic biology: application come to age. Nature Reviews Genetics, 11(5), 367–379.

    Article  CAS  Google Scholar 

  • Knuuttila, T. (2009). Representation, idealization, and fiction in economics: From the assumptions issue to the epistemology of modelling. In M. Suárez (Ed.), Fictions in science: Philosophical essays on modeling and idealization (pp. 205–231). New York/London: Routledge.

    Google Scholar 

  • Knuuttila, T. (2011). Modeling and representing: An artefactual approach. Studies in History and Philosophy of Science, 42(2), 262–271.

    Article  Google Scholar 

  • Knuuttila, T., & Loettgers, A. (2011). The productive tension: Mechanisms vs. templates in modeling the phenomena. In P. Humphreys & C. Imbert (Eds.), Representations, models, and simulations (pp. 3–24). New York: Routledge.

    Google Scholar 

  • Knuuttila, T., & Loettgers, A. (2013). Basic science through engineering: Synthetic modeling and the idea of biology-inspired engineering. Studies in History and Philosophy of Biological and Biomedical Sciences, 44(2), 158–169.

    Article  Google Scholar 

  • Knuuttila, T., & Loettgers, A. (2014). Varieties of noise: Analogical reasoning in synthetic biology. Studies in History and Philosophy of Science Part A, 48, 76–88.

    Article  Google Scholar 

  • Knuuttila, T., & Loettgers, A. (2016). Modelling as indirect representation? The Lotka-Volterra model revisited. British Journal for the Philosophy of Science. doi:10.1093/bjps/axv055.

  • Lenhard, J. (2007). Computer simulation: The cooperation between experimenting and modeling. Philosophy of Science, 74(2), 176–194.

    Article  Google Scholar 

  • Loettgers, A. (2009). Synthetic biology and the emergence of a dual meaning of noise. Biological Theory, 4(4), 340–349.

    Article  Google Scholar 

  • Marguéz-Lago, T., & Stelling, J. (2010). Counter-intuitive stochastic behavior of simple gene circuits with negative feedback. Biophysical Journal, 98(9), 1742–1750.

    Article  Google Scholar 

  • Nandagopal, N., & Elowitz, M. B. (2011). Synthetic biology: Integrated gene circuits. Science, 333(6047), 1244.

    Article  CAS  Google Scholar 

  • Pincock, C. (2012). Mathematics and scientific representation. Oxford and New York: Oxford University Press.

    Book  Google Scholar 

  • Pittendrigh, C. S. (1961). On temporal organization in living systems. The Harvey Lectures, 59, 63–125.

    Google Scholar 

  • Putman, H. (1975). What is mathematical truth? Historia Mathematica, 2(4), 529–533.

    Article  Google Scholar 

  • Rouse, J. (2009). Laboratory fictions. In M. Suárez (Ed.), Fictions in science: Philosophical essays on modeling and idealization (pp. 37–55). New York/London: Routledge.

    Google Scholar 

  • Sprinzak, D., & Elowitz, M. B. (2005). Reconstruction of genetic circuits. Nature, 438(7067), 443–448.

    Article  CAS  Google Scholar 

  • Steiner, M. (1998). The applicability of mathematics as a philosophical problem. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Suárez, M. (2009). Fictions in science: Philosophical essays on modeling and idealization. New York: Routledge.

    Google Scholar 

  • Süel, G. M., Kulkarni, R. P., Dworkin, J., Garcia-Ojalvo, J., & Elowitz, M. B. (2007). Tunability and noise dependence in differentiation dynamics. Science, 315(5819), 1716–1719.

    Article  Google Scholar 

  • Swain, P. S., Elowitz, M., & Siggia, E. D. (2002). Intrinsic and extrinsic contributions to stochasticity in gene expression. Proceedings of the National Academy Sciences, 99(20), 12795–12800.

    Article  CAS  Google Scholar 

  • Thomas, R., & D’Ari, R. (1990). Biological feedback. Boca Raton: CRC Press.

    Google Scholar 

  • Weisberg, M. (2007). Three kinds of idealization. The Journal of Philosophy, 104(12), 639–659.

    Article  Google Scholar 

  • Wigner, E. P. (1960). The unreasonable effectiveness of mathematics in the natural sciences. Communication on Pure and Applied Mathematics, 13(1), 1–14.

    Article  Google Scholar 

  • Winfree, A. (1967). Biological rhythms and the behavior of populations of coupled oscillators. Journal of Theoretical Biology, 16(1), 15–42.

    Article  CAS  Google Scholar 

  • Winfree, A. (2001). The geometry of biological time. Heidelberg/New York: Springer.

    Book  Google Scholar 

  • Zhang, F., Rodriquez, S., & Keasling, J. D. (2011). Metabolic engineering of microbial pathways for advanced biofuels production. Current Opinion in Biotechnology, 22(6), 775–783.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarja Knuuttila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Knuuttila, T., Loettgers, A. (2017). Mathematization in Synthetic Biology: Analogies, Templates, and Fictions. In: Lenhard, J., Carrier, M. (eds) Mathematics as a Tool. Boston Studies in the Philosophy and History of Science, vol 327. Springer, Cham. https://doi.org/10.1007/978-3-319-54469-4_3

Download citation

Publish with us

Policies and ethics