Skip to main content

Genomics and Genetic Engineering in Phytoremediation of Arsenic

  • Chapter
  • First Online:
Arsenic Contamination in the Environment

Abstract

Arsenic (As) is one the extremely toxic metalloids that adversely affects health and hence it is categorized under group A human carcinogen. Generally, As-contaminated sites are not remediated due to high cost. Phytoremediation is the process of using plants to treat or clean up contaminated sites and it relies on natural ability of plants to extract, accumulate, or detoxify chemicals from water, soil, and air using energy from sunlight. Over the past several years, significant progress has been made to improve the effectiveness and efficiency of phytoremediation for removal of many hazardous metals from environment. Recent progress in understanding and identification of several genes involved in As uptake, transport, and metabolism in plants led to use of transgenic plants for remediation. Initial experiments of using transgenic plants as a tool to remove As were not promising; however the last decade witnessed a dramatic increase in the reports on the ability of plants to remove/detoxify As. Transgenic plants exploit the natural ability of plants, which rely on uptake of As by roots, transport through vascular system and leaf as a sink to concentrate. An array of genes from different sources including microbes, plants, and animals were successfully used to improve the ability of plants to tolerate, detoxify, and accumulate As. Transgenic plants containing specific genes converted toxic As to other forms that are less harmful. This review examines the recent advances in enhancing phytoremediation through transgenic approach for phytoremediation of As.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali W, Isner JC, Isayenkov SV, Liu W, Zhao FJ, Maathuis FJM (2012) Heterologous expression of the yeast arsenite efflux system ACR3 improves Arabidopsis thaliana tolerance to arsenic stress. New Phytol 194:716–723

    Article  CAS  Google Scholar 

  • Andres J, Bertin PN (2016) The microbial genomics of arsenic. FEMS Microbiol Rev 40:299–322

    Article  Google Scholar 

  • Andres J, Arsène-Ploetze F, Barbe V, Brochier-Armanet C, Cleiss-Arnold J, Coppée JY, Dillies MA, Geist L, Joublin A, Koechler S, Lassalle F, Marchal M, Médigue C, Muller D, Nesme X, Plewniak F, Proux C, Ramírez-Bahena MH, Schenowitz C, Sismeiro O, Vallenet D, Santini JM, Bertin PN (2013) Life in an arsenic-containing gold mine: genome and physiology of the autotrophic arsenite-oxidizing bacterium rhizobium sp. NT-26. Genome Biol Evol 5:934–953

    Article  Google Scholar 

  • Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:1–15

    Article  Google Scholar 

  • Bleeker PM, Hakvoort HWJ, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J 45:917–929

    Article  CAS  Google Scholar 

  • Bundschuh J, Nath B, Bhattacharya P, Liu CW, Armienta MA, Moreno Lopez MV (2012) Arsenic in the human food chain: The Latin American perspective. Sci Total Environ 429:92–106

    Article  CAS  Google Scholar 

  • Carey AM, Scheckel KG, Lombi E, Newville M, Choi Y, Norton GJ (2010) Grain unloading of arsenic species in Rice. Plant Physiol 152:309–319

    Article  CAS  Google Scholar 

  • Cases I, De Lorenzo V (2005) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8:213–222

    CAS  Google Scholar 

  • Castrillo G, Sanchez-Bermejo E, de Lorenzo L, Crevillen P, Fraile-Escanciano A, Tc M (2013) WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell 25:2944–2957

    Article  CAS  Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM, Garcia-Ponce B, Lanza M, Solano R (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133

    Article  CAS  Google Scholar 

  • Chao DY, Chen Y, Chen J, Shi S, Chen Z, Wang C (2014) Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol 12:e1002009

    Article  Google Scholar 

  • Chaurasia N, Mishra A, Pandey SK (2012) Finger print of arsenic contaminated water in India—a review. J Foren Res 3:1–4

    Google Scholar 

  • Chen Z, Zhu YG, Liu WJ, Meharg AA (2005) Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake in rice (Oryza sativa) roots. New Phytol 165:91–97

    Article  CAS  Google Scholar 

  • Chen J, Qin J, Zhu YG, de Lorenzo V, Rosen BP (2013) Engineering the soil bacterium Pseudomonas putida for arsenic methylation. Appl Environ Microbiol 79:4493–4495

    Article  CAS  Google Scholar 

  • Chen Y, Xu W, Shen H, Yan H, Xu W, He Z, Ma M (2013) Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach. Environ Sci Technol 47:9355–9362

    Article  CAS  Google Scholar 

  • Chen J, Sun GX, Wang XX, Lorenzo VD, Rosen BP, Zhu YG (2014) Volatilization of arsenic from polluted soil by Pseudomonas putida engineered for expression of the arsM arsenic(III) S-adenosine methyltransferase gene. Environ Sci Technol 48:10337–10344

    Article  CAS  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    Article  CAS  Google Scholar 

  • Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci U S A 103:5413–5418

    Article  CAS  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Article  CAS  Google Scholar 

  • Doucleff M, Terry N (2002) Pumping out the arsenic. Nat Biotechnol 20:1094–1095

    Article  CAS  Google Scholar 

  • Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    Article  CAS  Google Scholar 

  • Ellis DR, Gumaelius L, Indriolo E, Pickering IJ, Banks JA, Salt DE (2006) A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata. Plant Physiol 141:1544–1554

    Article  CAS  Google Scholar 

  • Freel KC, Krueger MC, Farasin J, Brochier-Armanet C, Barbe V, Andrès J, Cholley PE, Dillies MA, Jagla B, Koechler S, Leva Y, Magdelenat G, Plewniak F, Proux C, Coppée JY, Bertin PN, Heipieper HJ, Arsène-Ploetze F (2015) Adaptation in toxic environments: arsenic genomic islands in the bacterial genus Thiomonas. PLoS One 10:e0139011

    Article  Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369

    Article  CAS  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  CAS  Google Scholar 

  • Guo J, Xu W, Ma M (2012) The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. J Hazard Mater 199–200:309–313

    Article  Google Scholar 

  • Huang K, Chen C, Shen Q, Rosen BP, Zhao FJ (2015) Genetically engineering Bacillus subtilis with a heat-resistant arsenite methyltransferase for bioremediation of arsenic-contaminated organic waste. Appl Environ Microbiol 81:6718–6724

    Article  CAS  Google Scholar 

  • Indriolo E, Na G, Ellis D, Salt DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2057

    Article  CAS  Google Scholar 

  • Kamiya T, Islam MR, Duan G, Uraguchi S, Fujiwara T (2013) Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice (plant nutrition). Soil Sci Plant Nutr 59:580–590

    Article  CAS  Google Scholar 

  • Kim YJ, Chang KS, Lee MR, Kim JH, Lee CE, Jeon YJ (2005) Expression of tobacco cDNA encoding phytochelatin synthase promotes tolerance to and accumulation of Cd and As in Saccharomyces cerevisiae. J Plant Biol 48:440–447

    Article  CAS  Google Scholar 

  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810

    Article  CAS  Google Scholar 

  • Kruger MC, Bertin PN, Heipieper HJ, Arsène-Ploetze F (2013) Bacterial metabolism of environmental arsenic—mechanisms and biotechnological applications. Appl Microbiol Biotechnol 97:3827–3841

    Article  CAS  Google Scholar 

  • LeBlanc MS, McKinney EC, Meagher RB, Smith AP (2013) Hijacking membrane transporters for arsenic phytoextraction. J Biotechnol 163:1–9

    Article  CAS  Google Scholar 

  • Lee BD, Hwang S (2015) Tobacco phytochelatin synthase (NtPCS1) plays important roles in cadmium and arsenic tolerance and in early plant development in tobacco. Plant Biotechnol Rep 9:107–114

    Article  Google Scholar 

  • Li Y (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:1787–1797

    Article  CAS  Google Scholar 

  • Li Y, Dankher OP, Carreira L, Smith AP, Meagher RB (2006) The shoot-specific expression of γ-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol 141:288–298

    Article  CAS  Google Scholar 

  • Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, McGrath SP (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080

    Article  CAS  Google Scholar 

  • Li X, Hu Y, Gong J, Lin Y, Johnstone L, Rensing C, Wang G (2011) Genome sequence of the highly efficient arsenite-oxidizing bacterium Achromobacter arsenitoxydans SY8. J Bacteriol 194:1243–1244

    Article  Google Scholar 

  • Li G, Santoni V, Maurel C (2014) Plant aquaporins: roles in plant physiology. Biochim Biophys Acta 1840:1574–1582

    Article  CAS  Google Scholar 

  • Li X, Zhang L, Wang G (2014) Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales. PLoS One 9:e92236

    Article  Google Scholar 

  • Li N, Wang J, Song WY (2016) Arsenic uptake and translocation in plants. Plant Cell Physiol 57:4–13

    Article  CAS  Google Scholar 

  • Liu S, Zhang F, Chen J, Sun G (2011) Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J Environ Sci (China) 23:1544–1550

    Article  CAS  Google Scholar 

  • Lou-Hing D, Zhang B, Price AH, Meharg AA (2011) Effects of phosphate on arsenate and arsenite sensitivity in two rice (Oryza sativa L.) cultivars of different sensitivity. Environ Exp Bot 72:47–52

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U S A 105:9931–9935

    Article  CAS  Google Scholar 

  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121

    Article  CAS  Google Scholar 

  • Meagher RB, Heaton ACP (2005) Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic. J Ind Microbiol Biotechnol 32:502–513

    Article  CAS  Google Scholar 

  • Mohan TC, Castrillo G, Navarro C, Zarco-Fernández S, Ramireddy E, Mateo C, Zamarreño AM, Paz-Ares J, Muñoz R, García-Mina JM, Hernández LE, Schmülling T, Leyva A (2016) Cytokinin determines thiol-mediated arsenic tolerance and accumulation. Plant Physiol 171:1418–1426

    Google Scholar 

  • Mosa KA, Kumar K, Chhikara S, Mcdermott J, Liu Z, Musante C (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgen Res 21:1265–1277

    Article  CAS  Google Scholar 

  • Muller D, Lievremont D, Simeonova DD, Hubert JC, Lett MC (2003) Arsenite oxidase aox genes from a metal-resistant beta-proteobacterium. J Bacteriol 185:135–141

    Article  CAS  Google Scholar 

  • Muller D, Medigue C, Koechler S, Barbe V, Barakat M, Talla E (2007) A tale of two oxidation states: bacterial colonization of arsenic-rich environments. PLoS Genet 3:53

    Article  Google Scholar 

  • Nie L, Shah S, Rashid A, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361

    Article  CAS  Google Scholar 

  • Nriagu J (2001) Arsenic poisoning through the ages. In: Frankenburger WT (ed) Environmental chemistry of arsenic. CRC Press, Boca Raton, FL, pp 1–26

    Google Scholar 

  • Pandey S, Shrivastava AK, Singh VK, Rai R, Singh PK, Rai S, Rai LC (2013) A new arsenate reductase involved in arsenic detoxification in Anabaena sp. PCC7120. Funct Integr Genomics 13:43–55

    Article  CAS  Google Scholar 

  • Picault N, Cazalé AC, Beyly A, Cuiné S, Carrier P, Luu DT, Forestier C, Peltier G (2006) Chloroplast targeting of phytochelatin synthase in Arabidopsis: effects on heavy metal tolerance and accumulation. Biochimie 88:1743–1750

    Article  CAS  Google Scholar 

  • Pilon-Smits E, Pilon M (2002) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21:439–456

    Article  CAS  Google Scholar 

  • Qin J, Lehr CR, Yuan C, Le XC, McDermott TR, Rosen BP (2009) Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci U S A 106:5213–5217

    Article  CAS  Google Scholar 

  • Rathinasabapathi B, Wu S, Sundaram S, Rivoal J, Srivastava M, Ma LQ (2006) Arsenic resistance in Pteris vittata L.: identification of a cytosolic triosephosphate isomerase based on cDNA expression cloning in Escherichia coli. Plant Mol Biol 62:845–857

    Article  CAS  Google Scholar 

  • Remy E, Cabrito TR, Batista RA, Teixeira MC, Sa-Correia I, Duque P (2012) The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol 195:356–371

    Article  CAS  Google Scholar 

  • Sánchez-Bermejo E, Castrillo G, del Llano B, Navarro C, Zarco-Fernández S, Martinez-Herrera DJ, Leo-del Puerto Y, Muñoz R, Cámara C, Paz-Ares J, Alonso-Blanco C, Leyva A (2014) Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana. Nat Commun 5:4617

    Article  Google Scholar 

  • Sarangi BK, Kalve SAPR, Chakrabarti T (2009) Transgenic plants for phytoremediation of arsenic and chromium to enhance tolerance and hyperaccumulation. Transgen Plant J 3:57–86

    Google Scholar 

  • Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497:60–66

    Article  CAS  Google Scholar 

  • Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J Cell Mol Biol 39:629–642

    Article  CAS  Google Scholar 

  • Shri M, Dave R, Diwedi S, Shukla D, Kesari R, Tripathi RD, Trivedi PK, Chakrabarty D (2014) Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci Rep 4:5784

    Article  CAS  Google Scholar 

  • Shukla D, Kesari R, Mishra S, Dwivedi S, Tripathi RD, Nath P, Trivedi PK (2012) Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. Plant Cell Rep 31:1687–1699

    Article  CAS  Google Scholar 

  • Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608

    Article  CAS  Google Scholar 

  • Slyemi D, Bonnefoy V (2012) How prokaryotes deal with arsenic(dagger). Environ Microbiol Rep 4:571–586

    CAS  Google Scholar 

  • Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A 107:21187–21192

    Article  CAS  Google Scholar 

  • Song WY, Mendoza-Cozatl DG, Lee Y, Schroeder JI, Ahn SN, Lee HS (2014a) Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis. Plant Cell Environ 37:1192–1201

    Article  CAS  Google Scholar 

  • Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M (2014b) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci U S A 111:15699–15704

    Article  CAS  Google Scholar 

  • Sundaram S, Wu S, Ma LQ, Rathinasabapathi B (2009) Expression of a Pteris vittata glutaredoxin PvGRX5 in transgenic Arabidopsis thaliana increases plant arsenic tolerance and decreases arsenic accumulation in the leaves. Plant Cell Environ 32:851–858

    Article  CAS  Google Scholar 

  • Tiwari M, Sharma D, Dwivedi S, Singh M, Tripathi RD, Trivedi PK (2014) Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant Cell Environ 37:140–152

    Article  CAS  Google Scholar 

  • Tsao DT (2003) Overview of phytotechnologies. Adv Biochem Eng/Biotechnol 78:1–50

    Article  CAS  Google Scholar 

  • van Lis R, Nitschke W, Duval S, Schoepp-Cothenet B (2013) Arsenics as bioenergetic substrates. Biochim Biophys Acta 1827:176–188

    Article  Google Scholar 

  • Verbruggen N, LeDuc DL (2009) Potential of plant genetic engineering for phytoremediation of toxic trace elements. Encyclop Life Supp Syst 24. http://www.eolss.net/Sample-Chapters/C09/E6-199-12-00.pdf

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372

    Article  CAS  Google Scholar 

  • Verma PK, Verma S, Pande V, Mallick S, Deo Tripathi R, Dhankher OP, Chakrabarty D (2016) Overexpression of rice glutaredoxin OsGrx_C7 and OsGrx_C2.1 reduces intracellular arsenic accumulation and increases tolerance in Arabidopsis thaliana. Front Plant Sci 7:740

    Google Scholar 

  • Wang H, Xu Q, Kong YH, Chen Y, Duan JY, Wu WH, Chen YF (2014) Arabidopsis WRKY45 transcription factor activates phosphate Transporter1;1 expression in response to phosphate starvation. Plant Physiol 164:2020–2029

    Article  CAS  Google Scholar 

  • Wangeline AL, Burkhead JL, Hale KL, Lindblom SD, Terry N, Pilon M, Pilon-Smits EAH (2004) Overexpression of ATP sulfurylase in Indian mustard: effects on tolerance and accumulation of twelve metals. J Environ Qual 33:54–60

    Article  CAS  Google Scholar 

  • Wojas S, Clemens S, Skłodowska A, Maria Antosiewicz D (2010) Arsenic response of AtPCS1- and CePCS-expressing plants—effects of external As(V) concentration on As-accumulation pattern and NPT metabolism. J Plant Physiol 167:169–175

    Article  CAS  Google Scholar 

  • Wu Z, Ren H, McGrath SP, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508

    Article  CAS  Google Scholar 

  • Ye WL, Wood BA, Stroud JL, Andralojc PJ, Raab A, McGrath SP (2010) Arsenic speciation in phloem and xylem exudates of castor bean. Plant Physiol 154:1505–1513

    Article  CAS  Google Scholar 

  • Zanella L, Fattorini L, Brunetti P, Roccotiello E, Cornara L, D'Angeli S, Della Rovere F, Cardarelli M, Barbieri M, Sanità di Toppi L, Degola F, Lindberg S, Altamura MM, Falasca G (2016) Overexpression of AtPCS1 in tobacco increases arsenic and arsenic plus cadmium accumulation and detoxification. Planta 243:605–622

    Article  CAS  Google Scholar 

  • Zargar K, Conrad A, Bernick DL, Lowe TM, Stolc V, Hoeft S (2012) ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases. Environ Microbiol 14:1635–1645

    Article  CAS  Google Scholar 

  • Zhao FJ, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373–380

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  Google Scholar 

  • Zhu YG, Rosen BP (2015) Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality. Curr Opin Biotechnol 20:220–224

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathishkumar Ramalingam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kumar, S.R., Iyappan, G., Jagadeesan, H., Ramalingam, S. (2017). Genomics and Genetic Engineering in Phytoremediation of Arsenic. In: Gupta, D., Chatterjee, S. (eds) Arsenic Contamination in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-54356-7_8

Download citation

Publish with us

Policies and ethics