Skip to main content

Bioinformatics Tools for Genome-Wide Epigenetic Research

  • Chapter
  • First Online:
Neuroepigenomics in Aging and Disease

Abstract

Epigenetics play a central role in the regulation of many important cellular processes, and dysregulations at the epigenetic level could be the source of serious pathologies, such as neurological disorders affecting brain development, neurodegeneration, and intellectual disability. Despite significant technological advances for epigenetic profiling, there is still a need for a systematic understanding of how epigenetics shapes cellular circuitry, and disease pathogenesis. The development of accurate computational approaches for analyzing complex epigenetic profiles is essential for disentangling the mechanisms underlying cellular development, and the intricate interaction networks determining and sensing chromatin modifications and DNA methylation to control gene expression. In this chapter, we review the recent advances in the field of “computational epigenetics,” including computational methods for processing different types of epigenetic data, prediction of chromatin states, and study of protein dynamics. We also discuss how “computational epigenetics” has complemented the fast growth in the generation of epigenetic data for uncovering the main differences and similarities at the epigenetic level between individuals and the mechanisms underlying disease onset and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gehring M, Reik W, Henikoff S. DNA demethylation by DNA repair. Trends Genet. 2009;25(2):82–90.

    Article  CAS  PubMed  Google Scholar 

  2. Loizou JI, Murr R, Finkbeiner MG, Sawan C, Wang ZQ, Herceg Z. Epigenetic information in chromatin: the code of entry for DNA repair. Cell Cycle. 2006;5(7):696–701.

    Article  CAS  PubMed  Google Scholar 

  3. Probst AV, Dunleavy E, Almouzni G. Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol. 2009;10(3):192–206.

    Article  CAS  PubMed  Google Scholar 

  4. Richards EJ. Inherited epigenetic variation--revisiting soft inheritance. Nat Rev Genet. 2006;7(5):395–401.

    Article  CAS  PubMed  Google Scholar 

  5. Grewal SI, Moazed D. Heterochromatin and epigenetic control of gene expression. Science. 2003;301(5634):798–802.

    Article  CAS  PubMed  Google Scholar 

  6. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.

    Article  CAS  PubMed  Google Scholar 

  7. Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell. 2014;157(1):95–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, Regev A, et al. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature. 2012;484(7394):339–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.

    Article  CAS  PubMed  Google Scholar 

  10. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.

    Article  CAS  PubMed  Google Scholar 

  11. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.

    Article  CAS  PubMed  Google Scholar 

  12. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14(3):204–20.

    Article  CAS  PubMed  Google Scholar 

  13. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5.

    Article  CAS  PubMed  Google Scholar 

  14. Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol. 2014;15(11):703–8.

    Article  CAS  PubMed  Google Scholar 

  15. Rando OJ. Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr Opin Genet Dev. 2012;22(2):148–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Du J, Johnson LM, Jacobsen SE, Patel DJ. DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol. 2015;16(9):519–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo X, Wang L, Li J, Ding Z, Xiao J, Yin X, et al. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature. 2015;517(7536):640–4.

    Article  CAS  PubMed  Google Scholar 

  18. Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature. 2007;448(7154):714–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov. 2012;11(5):384–400.

    Article  CAS  PubMed  Google Scholar 

  20. Musselman CA, Lalonde ME, Cote J, Kutateladze TG. Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol. 2012;19(12):1218–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Torres IO, Fujimori DG. Functional coupling between writers, erasers and readers of histone and DNA methylation. Curr Opin Struct Biol. 2015;35:68–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Handel AE, Ebers GC, Ramagopalan SV. Epigenetics: molecular mechanisms and implications for disease. Trends Mol Med. 2010;16(1):7–16.

    Article  CAS  PubMed  Google Scholar 

  24. Ordovas JM, Smith CE. Epigenetics and cardiovascular disease. Nat Rev Cardiol. 2010;7(9):510–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68.

    Article  CAS  PubMed  Google Scholar 

  26. Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature. 2007;447(7143):433–40.

    Article  CAS  PubMed  Google Scholar 

  27. Haas J, Frese KS, Park YJ, Keller A, Vogel B, Lindroth AM, et al. Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol Med. 2013;5(3):413–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pujadas E, Feinberg AP. Regulated noise in the epigenetic landscape of development and disease. Cell. 2012;148(6):1123–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet. 2006;7(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  30. Ahuja N, Easwaran H, Baylin SB. Harnessing the potential of epigenetic therapy to target solid tumors. J Clin Invest. 2014;124(1):56–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer. 2011;11(10):726–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jakovcevski M, Akbarian S. Epigenetic mechanisms in neurological disease. Nat Med. 2012;18(8):1194–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Day JJ, Sweatt JD. Epigenetic mechanisms in cognition. Neuron. 2011;70(5):813–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dulac C. Brain function and chromatin plasticity. Nature. 2010;465(7299):728–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jensen LR, Amende M, Gurok U, Moser B, Gimmel V, Tzschach A, et al. Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am J Hum Genet. 2005;76(2):227–36.

    Article  CAS  PubMed  Google Scholar 

  37. Miller CA, Gavin CF, White JA, Parrish RR, Honasoge A, Yancey CR, et al. Cortical DNA methylation maintains remote memory. Nat Neurosci. 2010;13(6):664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–30.

    Article  CAS  Google Scholar 

  39. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–37.

    Article  CAS  PubMed  Google Scholar 

  40. Buck MJ, Lieb JD. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics. 2004;83(3):349–60.

    Article  CAS  PubMed  Google Scholar 

  41. Huebert DJ, Kamal M, O'Donovan A, Bernstein BE. Genome-wide analysis of histone modifications by ChIP-on-chip. Methods. 2006;40(4):365–9.

    Article  CAS  PubMed  Google Scholar 

  42. Furey TS. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet. 2012;13(12):840–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nakato R, Shirahige K. Recent advances in ChIP-seq analysis: from quality management to whole-genome annotation. Briefings Bioinform. 2016.

    Google Scholar 

  44. Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet. 2009;10(10):669–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bartke T, Borgel J, DiMaggio PA. Proteomics in epigenetics: new perspectives for cancer research. Brief Funct Genomics. 2013;12(3):205–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garcia BA, Shabanowitz J, Hunt DF. Characterization of histones and their post-translational modifications by mass spectrometry. Curr Opin Chem Biol. 2007;11(1):66–73.

    Article  CAS  PubMed  Google Scholar 

  47. Moradian A, Kalli A, Sweredoski MJ, Hess S. The top-down, middle-down, and bottom-up mass spectrometry approaches for characterization of histone variants and their post-translational modifications. Proteomics. 2014;14(4–5):489–97.

    Article  CAS  PubMed  Google Scholar 

  48. Tian Z, Tolic N, Zhao R, Moore RJ, Hengel SM, Robinson EW, et al. Enhanced top-down characterization of histone post-translational modifications. Genome Biol. 2012;13(10):R86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Olsen JV, Mann M. Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics. 2013;12(12):3444–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bock C, Lengauer T. Computational epigenetics. Bioinformatics. 2008;24(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang ZD, Rozowsky J, Lam HY, Du J, Snyder M, Gerstein M. Tilescope: online analysis pipeline for high-density tiling microarray data. Genome Biol. 2007;8(5):R81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ji H, Wong WH. TileMap: create chromosomal map of tiling array hybridizations. Bioinformatics. 2005;21(18):3629–36.

    Article  CAS  PubMed  Google Scholar 

  53. Toedling J, Skylar O, Krueger T, Fischer JJ, Sperling S, Huber W. Ringo--an R/Bioconductor package for analyzing ChIP-chip readouts. BMC Bioinform. 2007;8:221.

    Article  CAS  Google Scholar 

  54. Scacheri PC, Crawford GE, Davis S. Statistics for ChIP-chip and DNase hypersensitivity experiments on NimbleGen arrays. Methods Enzymol. 2006;411:270–82.

    Article  CAS  PubMed  Google Scholar 

  55. Keles S. Mixture modeling for genome-wide localization of transcription factors. Biometrics. 2007;63(1):10–21.

    Article  CAS  PubMed  Google Scholar 

  56. Buck MJ, Nobel AB, Lieb JD. ChIPOTle: a user-friendly tool for the analysis of ChIP-chip data. Genome Biol. 2005;6(11):R97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Li W, Meyer CA, Liu XS. A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences. Bioinformatics. 2005;21(Suppl 1):i274–82.

    Article  CAS  PubMed  Google Scholar 

  58. Johnson WE, Li W, Meyer CA, Gottardo R, Carroll JS, Brown M, et al. Model-based analysis of tiling-arrays for ChIP-chip. Proc Natl Acad Sci U S A. 2006;103(33):12457–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009;25(15):1966–7.

    Article  CAS  PubMed  Google Scholar 

  62. Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res. 2002;12(4):656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li H, Homer N. A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinform. 2010;11(5):473–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007;448(7153):553–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 2012;22(9):1813–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hansen P, Hecht J, Ibrahim DM, Krannich A, Truss M, Robinson PN. Saturation analysis of ChIP-seq data for reproducible identification of binding peaks. Genome Res. 2015;25(9):1391–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pepke S, Wold B, Mortazavi A. Computation for ChIP-seq and RNA-seq studies. Nat Methods. 2009;6(11 Suppl):S22–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ji H, Jiang H, Ma W, Johnson DS, Myers RM, Wong WH. An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol. 2008;26(11):1293–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jothi R, Cuddapah S, Barski A, Cui K, Zhao K. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res. 2008;36(16):5221–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bardet AF, Steinmann J, Bafna S, Knoblich JA, Zeitlinger J, Stark A. Identification of transcription factor binding sites from ChIP-seq data at high resolution. Bioinformatics. 2013;29(21):2705–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kharchenko PV, Tolstorukov MY, Park PJ. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol. 2008;26(12):1351–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Boyle AP, Guinney J, Crawford GE, Furey TS. F-Seq: a feature density estimator for high-throughput sequence tags. Bioinformatics. 2008;24(21):2537–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Valouev A, Johnson DS, Sundquist A, Medina C, Anton E, Batzoglou S, et al. Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods. 2008;5(9):829–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang X, Robertson G, Krzywinski M, Ning K, Droit A, Jones S, et al. PICS: probabilistic inference for ChIP-seq. Biometrics. 2011;67(1):151–63.

    Article  PubMed  Google Scholar 

  77. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ibrahim MM, Lacadie SA, Ohler U. JAMM: a peak finder for joint analysis of NGS replicates. Bioinformatics. 2015;31(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang Y, Lin YH, Johnson TD, Rozek LS, Sartor MA. PePr: a peak-calling prioritization pipeline to identify consistent or differential peaks from replicated ChIP-Seq data. Bioinformatics. 2014;30(18):2568–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tuteja G, White P, Schug J, Kaestner KH. Extracting transcription factor targets from ChIP-Seq data. Nucleic Acids Res. 2009;37(17):e113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Rozowsky J, Euskirchen G, Auerbach RK, Zhang ZD, Gibson T, Bjornson R, et al. PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat Biotechnol. 2009;27(1):66–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Flensburg C, Kinkel SA, Keniry A, Blewitt ME, Oshlack A. A comparison of control samples for ChIP-seq of histone modifications. Frontiers in genetics. 2014;5:329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Laajala TD, Raghav S, Tuomela S, Lahesmaa R, Aittokallio T, Elo LL. A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments. BMC Genomics. 2009;10:618.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Malone BM, Tan F, Bridges SM, Peng Z. Comparison of four ChIP-Seq analytical algorithms using rice endosperm H3K27 trimethylation profiling data. PLoS One. 2011;6(9):e25260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Horn DM, Zubarev RA, McLafferty FW. Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. J Am Soc Mass Spectrom. 2000;11(4):320–32.

    Article  CAS  PubMed  Google Scholar 

  86. Liu X, Inbar Y, Dorrestein PC, Wynne C, Edwards N, Souda P, et al. Deconvolution and database search of complex tandem mass spectra of intact proteins: a combinatorial approach. Mol Cell Proteomics. 2010;9(12):2772–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Carvalho PC, Xu T, Han X, Cociorva D, Barbosa VC, Yates 3rd. JR. YADA: a tool for taking the most out of high-resolution spectra. Bioinformatics. 2009;25(20):2734–6.

    Google Scholar 

  88. Huttenhain R, Hess S. A combined top-down and bottom-up MS approach for the characterization of hemoglobin variants in Rhesus monkeys. Proteomics. 2010;10(20):3657–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Sidoli S, Cheng L, Jensen ON. Proteomics in chromatin biology and epigenetics: Elucidation of post-translational modifications of histone proteins by mass spectrometry. J Proteomics. 2012;75(12):3419–33.

    Article  CAS  PubMed  Google Scholar 

  90. Zamdborg L, LeDuc RD, Glowacz KJ, Kim YB, Viswanathan V, Spaulding IT, et al. ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry. Nucleic acids research. 2007;35(Web Server issue):W701–6.

    Google Scholar 

  91. Liu X, Sirotkin Y, Shen Y, Anderson G, Tsai YS, Ting YS, et al. Protein identification using top-down. Mol Cell Proteom. 2012;11(6):M111 008524.

    Google Scholar 

  92. Kalli A, Sweredoski MJ, Hess S. Data-dependent middle-down nano-liquid chromatography-electron capture dissociation-tandem mass spectrometry: an application for the analysis of unfractionated histones. Anal Chem. 2013;85(7):3501–7.

    Article  CAS  PubMed  Google Scholar 

  93. DiMaggio Jr PA, Young NL, Baliban RC, Garcia BA, Floudas CA. A mixed integer linear optimization framework for the identification and quantification of targeted post-translational modifications of highly modified proteins using multiplexed electron transfer dissociation tandem mass spectrometry. Mol Cell Proteomics. 2009;8(11):2527–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pesavento JJ, Mizzen CA, Kelleher NL. Quantitative analysis of modified proteins and their positional isomers by tandem mass spectrometry: human histone H4. Anal Chem. 2006;78(13):4271–80.

    Article  CAS  PubMed  Google Scholar 

  95. Siuti N, Roth MJ, Mizzen CA, Kelleher NL, Pesavento JJ. Gene-specific characterization of human histone H2B by electron capture dissociation. J Proteome Res. 2006;5(2):233–9.

    Article  CAS  PubMed  Google Scholar 

  96. Guan S, Burlingame AL. Data processing algorithms for analysis of high resolution MSMS spectra of peptides with complex patterns of posttranslational modifications. Mol Cell Proteomics. 2010;9(5):804–10.

    Article  CAS  PubMed  Google Scholar 

  97. Matthiesen R, Trelle MB, Hojrup P, Bunkenborg J, Jensen ON. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins. J Proteome Res. 2005;4(6):2338–47.

    Article  CAS  PubMed  Google Scholar 

  98. Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science. 2012;336(6083):934–7.

    Article  CAS  PubMed  Google Scholar 

  99. Deng J, Shoemaker R, Xie B, Gore A, LeProust EM, Antosiewicz-Bourget J, et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat Biotechnol. 2009;27(4):353–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, et al. High density DNA methylation array with single CpG site resolution. Genomics. 2011;98(4):288–95.

    Article  CAS  PubMed  Google Scholar 

  101. Schumacher A, Kapranov P, Kaminsky Z, Flanagan J, Assadzadeh A, Yau P, et al. Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Res. 2006;34(2):528–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol. 2008;26(7):779–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Serre D, Lee BH, Ting AH. MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res. 2010;38(2):391–9.

    Article  CAS  PubMed  Google Scholar 

  104. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet. 2005;37(8):853–62.

    Article  CAS  PubMed  Google Scholar 

  105. Xi Y, Bock C, Muller F, Sun D, Meissner A, Li W. RRBSMAP: a fast, accurate and user-friendly alignment tool for reduced representation bisulfite sequencing. Bioinformatics. 2012;28(3):430–2.

    Article  CAS  PubMed  Google Scholar 

  106. Smith AD, Chung WY, Hodges E, Kendall J, Hannon G, Hicks J, et al. Updates to the RMAP short-read mapping software. Bioinformatics. 2009;25(21):2841–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010;26(7):873–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Otto C, Stadler PF, Hoffmann S. Fast and sensitive mapping of bisulfite-treated sequencing data. Bioinformatics. 2012;28(13):1698–704.

    Article  CAS  PubMed  Google Scholar 

  109. Pedersen B, Hsieh TF, Ibarra C, Fischer RL. MethylCoder: software pipeline for bisulfite-treated sequences. Bioinformatics. 2011;27(17):2435–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Harris EY, Ponts N, Le Roch KG, Lonardi S. BRAT-BW: efficient and accurate mapping of bisulfite-treated reads. Bioinformatics. 2012;28(13):1795–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27(11):1571–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu Y, Siegmund KD, Laird PW, Berman BP. Bis-SNP: combined DNA methylation and SNP calling for Bisulfite-seq data. Genome Biol. 2012;13(7):R61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Barturen G, Rueda A, Oliver JL, Hackenberg M. MethylExtract: High-Quality methylation maps and SNV calling from whole genome bisulfite sequencing data. F1000Research. 2013;2:217.

    Google Scholar 

  114. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, et al. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics. 2009;25(17):2283–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gao S, Zou D, Mao L, Liu H, Song P, Chen Y, et al. BS-SNPer: SNP calling in bisulfite-seq data. Bioinformatics. 2015;31(24):4006–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Dunning MJ, Smith ML, Ritchie ME, Tavare S. beadarray: R classes and methods for Illumina bead-based data. Bioinformatics. 2007;23(16):2183–4.

    Article  CAS  PubMed  Google Scholar 

  117. Wang D, Yan L, Hu Q, Sucheston LE, Higgins MJ, Ambrosone CB, et al. IMA: an R package for high-throughput analysis of Illumina's 450 K Infinium methylation data. Bioinformatics. 2012;28(5):729–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kuan PF, Wang S, Zhou X, Chu H. A statistical framework for Illumina DNA methylation arrays. Bioinformatics. 2010;26(22):2849–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Du P, Kibbe WA, Lin SM. lumi: a pipeline for processing Illumina microarray. Bioinformatics. 2008;24(13):1547–8.

    Article  CAS  PubMed  Google Scholar 

  120. Wettenhall JM, Smyth GK. limmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics. 2004;20(18):3705–6.

    Article  CAS  PubMed  Google Scholar 

  121. Mancuso FM, Montfort M, Carreras A, Alibes A, Roma G. HumMeth27QCReport: an R package for quality control and primary analysis of Illumina Infinium methylation data. BMC Res Notes. 2011;4:546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Marabita F, Almgren M, Lindholm ME, Ruhrmann S, Fagerstrom-Billai F, Jagodic M, et al. An evaluation of analysis pipelines for DNA methylation profiling using the Illumina HumanMethylation450 BeadChip platform. Epigenetics. 2013;8(3):333–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Maksimovic J, Gordon L, Oshlack A. SWAN: Subset-quantile within array normalization for illumina infinium HumanMethylation450 BeadChips. Genome Biol. 2012;13(6):R44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Touleimat N, Tost J. Complete pipeline for Infinium((R)) Human Methylation 450 K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics. 2012;4(3):325–41.

    Article  CAS  PubMed  Google Scholar 

  125. Pidsley R, CC YW, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven approach to preprocessing Illumina 450 K methylation array data. BMC Genomics 2013;14:293.

    Google Scholar 

  126. Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics. 2013;29(2):189–96.

    Article  CAS  PubMed  Google Scholar 

  127. Barfield RT, Kilaru V, Smith AK, Conneely KN. CpGassoc: an R function for analysis of DNA methylation microarray data. Bioinformatics. 2012;28(9):1280–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kilaru V, Barfield RT, Schroeder JW, Smith AK, Conneely KN. MethLAB: a graphical user interface package for the analysis of array-based DNA methylation data. Epigenetics. 2012;7(3):225–9.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Teschendorff AE, Zhuang J, Widschwendter M. Independent surrogate variable analysis to deconvolve confounding factors in large-scale microarray profiling studies. Bioinformatics. 2011;27(11):1496–505.

    Article  CAS  PubMed  Google Scholar 

  130. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell. 2006;126(6):1189–201.

    Article  CAS  PubMed  Google Scholar 

  131. Cross SH, Charlton JA, Nan X, Bird AP. Purification of CpG islands using a methylated DNA binding column. Nat Genet. 1994;6(3):236–44.

    Article  CAS  PubMed  Google Scholar 

  132. Kangaspeska S, Stride B, Metivier R, Polycarpou-Schwarz M, Ibberson D, Carmouche RP, et al. Transient cyclical methylation of promoter DNA. Nature. 2008;452(7183):112–5.

    Article  CAS  PubMed  Google Scholar 

  133. Lienhard M, Grimm C, Morkel M, Herwig R, Chavez L. MEDIPS: genome-wide differential coverage analysis of sequencing data derived from DNA enrichment experiments. Bioinformatics. 2014;30(2):284–6.

    Article  CAS  PubMed  Google Scholar 

  134. Assenov Y, Muller F, Lutsik P, Walter J, Lengauer T, Bock C. Comprehensive analysis of DNA methylation data with RnBeads. Nat Methods. 2014;11(11):1138–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Song L, Crawford GE. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harbor protocols. 2010;2010(2):pdb prot5384.

    Google Scholar 

  136. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res. 2007;17(6):877–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10(12):1213–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Meyer CA, Liu XS. Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat Rev Genet. 2014;15(11):709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Madrigal P, Krajewski P. Current bioinformatic approaches to identify DNase I hypersensitive sites and genomic footprints from DNase-seq data. Front Genet. 2012;3:230.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Koohy H, Down TA, Spivakov M, Hubbard T. A comparison of peak callers used for DNase-Seq data. PLoS One. 2014;9(5):e96303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Gaulton KJ, Nammo T, Pasquali L, Simon JM, Giresi PG, Fogarty MP, et al. A map of open chromatin in human pancreatic islets. Nat Genet. 2010;42(3):255–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rashid NU, Giresi PG, Ibrahim JG, Sun W, Lieb JD. ZINBA integrates local covariates with DNA-seq data to identify broad and narrow regions of enrichment, even within amplified genomic regions. Genome Biol. 2011;12(7):R67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, et al. The accessible chromatin landscape of the human genome. Nature. 2012;489(7414):75–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang YM, Zhou P, Wang LY, Li ZH, Zhang YN, Zhang YX. Correlation between DNase I hypersensitive site distribution and gene expression in HeLa S3 cells. PLoS One. 2012;7(8):e42414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.

    Article  CAS  Google Scholar 

  146. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol. 2010;28(10):1045–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Song Q, Decato B, Hong EE, Zhou M, Fang F, Qu J, et al. A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics. PLoS One. 2013;8(12):e81148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Xin Y, Chanrion B, O'Donnell AH, Milekic M, Costa R, Ge Y, et al. MethylomeDB: a database of DNA methylation profiles of the brain. Nucleic Acids Res. 2012;40(Database issue):D1245–9.

    Article  CAS  PubMed  Google Scholar 

  149. Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R, Leek JT, et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature. 2011;478(7370):519–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Shen L, Shao NY, Liu X, Maze I, Feng J, Nestler EJ. diffReps: detecting differential chromatin modification sites from ChIP-seq data with biological replicates. PloS one. 2013;8(6):e65598.

    Google Scholar 

  151. Cheng C, Yan KK, Yip KY, Rozowsky J, Alexander R, Shou C, et al. A statistical framework for modeling gene expression using chromatin features and application to modENCODE datasets. Genome Biol. 2011;12(2):R15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Dong X, Greven MC, Kundaje A, Djebali S, Brown JB, Cheng C, et al. Modeling gene expression using chromatin features in various cellular contexts. Genome Biol. 2012;13(9):R53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Feng J, Wilkinson M, Liu X, Purushothaman I, Ferguson D, Vialou V, et al. Chronic cocaine-regulated epigenomic changes in mouse nucleus accumbens. Genome Biol. 2014;15(4):R65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Bajic VB, Tan SL, Suzuki Y, Sugano S. Promoter prediction analysis on the whole human genome. Nat Biotechnol. 2004;22(11):1467–73.

    Article  CAS  PubMed  Google Scholar 

  155. Bock C, Walter J, Paulsen M, Lengauer T. CpG island mapping by epigenome prediction. PLoS Comput Biol. 2007;3(6):e110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Feltus FA, Lee EK, Costello JF, Plass C, Vertino PM. Predicting aberrant CpG island methylation. Proc Natl Acad Sci U S A. 2003;100(21):12253–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Das R, Dimitrova N, Xuan Z, Rollins RA, Haghighi F, Edwards JR, et al. Computational prediction of methylation status in human genomic sequences. Proc Natl Acad Sci U S A. 2006;103(28):10713–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Fang F, Fan S, Zhang X, Zhang MQ. Predicting methylation status of CpG islands in the human brain. Bioinformatics. 2006;22(18):2204–9.

    Article  CAS  PubMed  Google Scholar 

  159. Peckham HE, Thurman RE, Fu Y, Stamatoyannopoulos JA, Noble WS, Struhl K, et al. Nucleosome positioning signals in genomic DNA. Genome Res. 2007;17(8):1170–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Segal E, Fondufe-Mittendorf Y, Chen L, Thastrom A, Field Y, Moore IK, et al. A genomic code for nucleosome positioning. Nature. 2006;442(7104):772–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods. 2012;9(3):215–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hoffman MM, Buske OJ, Wang J, Weng Z, Bilmes JA, Noble WS. Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat Methods. 2012;9(5):473–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al. An atlas of active enhancers across human cell types and tissues. Nature. 2014;507(7493):455–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Maze I, Shen L, Zhang B, Garcia BA, Shao N, Mitchell A, et al. Analytical tools and current challenges in the modern era of neuroepigenomics. Nat Neurosci. 2014;17(11):1476–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Schadt EE, Friend SH, Shaywitz DA. A network view of disease and compound screening. Nat Rev Drug Discov. 2009;8(4):286–95.

    Article  CAS  PubMed  Google Scholar 

  167. Jonsson PF, Bates PA. Global topological features of cancer proteins in the human interactome. Bioinformatics. 2006;22(18):2291–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wachi S, Yoneda K, Wu R. Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics. 2005;21(23):4205–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL. The human disease network. Proc Natl Acad Sci U S A. 2007;104(21):8685–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lage K, Karlberg EO, Storling ZM, Olason PI, Pedersen AG, Rigina O, et al. A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol. 2007;25(3):309–16.

    Article  CAS  PubMed  Google Scholar 

  172. Crespo I, Del Sol A. A general strategy for cellular reprogramming: the importance of transcription factor cross-repression. Stem Cells. 2013;31(10):2127–35.

    Article  PubMed  CAS  Google Scholar 

  173. Crespo I, Perumal TM, Jurkowski W, del Sol A. Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks. BMC Syst Biol. 2013;7:140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Del Sol A, Buckley NJ. Concise review: a population shift view of cellular reprogramming. Stem Cells. 2014;32(6):1367–72.

    Article  CAS  PubMed  Google Scholar 

  175. del Sol A, Balling R, Hood L, Galas D. Diseases as network perturbations. Curr Opin Biotechnol. 2010;21(4):566–71.

    Article  PubMed  CAS  Google Scholar 

  176. Huang S, Ernberg I, Kauffman S. Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin Cell Dev Biol. 2009;20(7):869–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zickenrott S, Angarica VE, Upadhyaya BB, del Sol A. Prediction of disease-gene-drug relationships following a differential network analysis. Cell Death Dis. 2016;7:e2040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Marbach D, Costello JC, Kuffner R, Vega NM, Prill RJ, Camacho DM, et al. Wisdom of crowds for robust gene network inference. Nat Methods. 2012;9(8):796–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G. Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci U S A. 2010;107(14):6286–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Horvath S. Weighted Network Analysis: Applications in Genomics and Systems Biology: Springer; 2011.

    Book  Google Scholar 

  181. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics. 2008;9:559.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V, et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell. 2013;155(5):1008–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Luo R, Sanders SJ, Tian Y, Voineagu I, Huang N, Chu SH, et al. Genome-wide transcriptome profiling reveals the functional impact of rare de novo and recurrent CNVs in autism spectrum disorders. Am J Hum Genet. 2012;91(1):38–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature. 2011;474(7351):380–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Miller JA, Horvath S, Geschwind DH. Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc Natl Acad Sci U S A. 2010;107(28):12698–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Miller JA, Woltjer RL, Goodenbour JM, Horvath S, Geschwind DH. Genes and pathways underlying regional and cell type changes in Alzheimer's disease. Genome Med. 2013;5(5):48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Langfelder P, Horvath S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol. 2007;1:54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, et al. Functional organization of the transcriptome in human brain. Nat Neurosci. 2008;11(11):1271–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, van Eijk K, et al. Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol. 2012;13(10):R97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Bocklandt S, Lin W, Sehl ME, Sanchez FJ, Sinsheimer JS, Horvath S, et al. Epigenetic predictor of age. PLoS One. 2011;6(6):e14821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ponomarev I, Wang S, Zhang L, Harris RA, Mayfield RD. Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J Neurosci. 2012;32(5):1884–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Horvath S, Langfelder P, Kwak S, Aaronson J, Rosinski J, Vogt TF, et al. Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels. Aging. 2016;8(7):1485–512.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Gage FH, Temple S. Neural stem cells: generating and regenerating the brain. Neuron. 2013;80(3):588–601.

    Article  CAS  PubMed  Google Scholar 

  194. Satterlee JS, Beckel-Mitchener A, Little R, Procaccini D, Rutter JL, Lossie AC. Neuroepigenomics: Resources, Obstacles, and Opportunities. Neuroepigenetics. 2015;1:2–13.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH, et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol. 2014;32(10):1053–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Poulin JF, Tasic B, Hjerling-Leffler J, Trimarchi JM, Awatramani R. Disentangling neural cell diversity using single-cell transcriptomics. Nat Neurosci. 2016;19(9):1131–41.

    Article  PubMed  CAS  Google Scholar 

  197. Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T, Yao Z, et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci. 2016;19(2):335–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Brady G, Barbara M, Iscove NN. Representative in vitro cDNA amplification from individual hemopoietic cells and colonies. Methods Mol Cell Biol. 1990;2(1):17–25.

    CAS  Google Scholar 

  199. Li CL, Li KC, Wu D, Chen Y, Luo H, Zhao JR, et al. Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity. Cell Res. 2016;26(8):967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Usoskin D, Furlan A, Islam S, Abdo H, Lonnerberg P, Lou D, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci. 2015;18(1):145–53.

    Article  CAS  PubMed  Google Scholar 

  201. Fuzik J, Zeisel A, Mate Z, Calvigioni D, Yanagawa Y, Szabo G, et al. Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. Nat Biotechnol. 2016;34(2):175–83.

    Article  CAS  PubMed  Google Scholar 

  202. Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Jureus A, et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347(6226):1138–42.

    Article  CAS  PubMed  Google Scholar 

  203. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015;161(5):1202–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Guo H, Zhu P, Wu X, Li X, Wen L, Tang F. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 2013;23(12):2126–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Farlik M, Sheffield NC, Nuzzo A, Datlinger P, Schonegger A, Klughammer J, et al. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep. 2015;10(8):1386–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods. 2014;11(8):817–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, et al. Immunogenetics. Chromatin state dynamics during blood formation. Science. 2014;345(6199):943–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol. 2015;33(11):1165–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Adli M, Bernstein BE. Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq. Nat Protoc. 2011;6(10):1656–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Shankaranarayanan P, Mendoza-Parra MA, Walia M, Wang L, Li N, Trindade LM, et al. Single-tube linear DNA amplification (LinDA) for robust ChIP-seq. Nat Methods. 2011;8(7):565–7.

    Article  CAS  PubMed  Google Scholar 

  211. Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L, Gunderson KL, et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science. 2015;348(6237):910–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015;523(7561):486–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161(5):1187–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323(5910):133–8.

    Article  CAS  PubMed  Google Scholar 

  215. Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods. 2010;7(6):461–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 2015;16(3):133–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Espinosa Angarica Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Angarica, V.E., del Sol, A. (2017). Bioinformatics Tools for Genome-Wide Epigenetic Research. In: Delgado-Morales, R. (eds) Neuroepigenomics in Aging and Disease. Advances in Experimental Medicine and Biology(), vol 978. Springer, Cham. https://doi.org/10.1007/978-3-319-53889-1_25

Download citation

Publish with us

Policies and ethics