Skip to main content

Ab Initio Methods for Nuclear Structure and Reactions: From Few to Many Nucleons

  • Chapter
  • First Online:
An Advanced Course in Computational Nuclear Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 936))

Abstract

These lecture notes intend to give a brief overview of some ab initio approaches currently used to study nuclear structure properties and reactions. In the first part particular attention is devoted to two methods useful to account for bound state properties. They are both based on the diagonalization of the full many-body Hamiltonian matrix, but share in addition the use of similarity transformations. Transforming the bare potential into an effective one, the latter help in speeding up the convergence of the results. In the second part ab initio methods for reaction cross sections involving the continuum part of the nuclear spectrum is described, with emphasis on perturbation induced reactions. They are based on integral transforms which make it possible to reduce the many-body scattering problem to a bound state problem, allowing to take advantage of any of the methods described in the first part.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Epelbaum, U.-G. Meißner, Ann. Rev. Nucl. Part. Sci. 62, 159 (2012)

    Article  ADS  Google Scholar 

  2. W. Leidemann, G. Orlandini, Prog. Part. Nucl. Phys. 68, 158 (2013)

    Article  ADS  Google Scholar 

  3. L.D. Faddeev, Sov. Phys. JETP 12, 1014 (1961)

    Google Scholar 

  4. O. Yakubowsky, Yad. Fiz. 5, 1312 (1967) [Sov. J. Nucl. Phys. 5, 937]

    Google Scholar 

  5. E.O. Alt, P. Grassberger, W. Sandhas, Nucl. Phys. B 2, 167 (1967); P. Grassberger, W. Sandhas, Nucl. Phys. B 2, 181 (1967)

    Google Scholar 

  6. J.M. Rayleigh, Philos. Trans. 161, 77 (1870)

    Google Scholar 

  7. W. Ritz, J. Reine Angew. Math. 135, 1 (1909)

    MathSciNet  Google Scholar 

  8. K. Wildermuth, Y.C. Tang, A Unified Theory of the Nucleus (Vieweg, Braunschweig, 1977); Y.C. Tang, M. Lemere, D.R. Thompson, Phys. Rep. 47, 169 (1978)

    Google Scholar 

  9. H.M. Hofmann, G.M. Hale, Nucl. Phys. A 613, 69 (1997); Phys. Rev. C 77, 044002 (2008)

    Google Scholar 

  10. V.I. Kukulin, V.M. Krasnopolsk, J. Phys. 3, 795 (1977)

    Article  ADS  Google Scholar 

  11. Y. Suzuki, K. Varga, Stochastic Variational Approach to Quantum Mechanical Few-Body Problems (Springer, Berlin, 1998)

    MATH  Google Scholar 

  12. H. Kamada et al., Phys. Rev. C 64, 044001 (2001)

    Article  ADS  Google Scholar 

  13. J.O. Hirschfelder, J. Dahler, Proc. Natl. Acad. Sci. U. S. A. 42, 363 (1956)

    Article  ADS  Google Scholar 

  14. A. Novoselsky, J. Katriel, Phys. Rev. A 49, 833 (1994)

    Article  ADS  Google Scholar 

  15. S. Deflorian, N. Barnea, W. Leidemann, G. Orlandini, Few-Body Syst. 54, 1879 (2013)

    Article  ADS  Google Scholar 

  16. S. Okubo, Prog. Theor. Phys. 12, 603 (1954)

    Article  ADS  MathSciNet  Google Scholar 

  17. J. da Providencia, C.M. Shakin, Ann. Phys. 30, 95 (1964)

    Article  ADS  Google Scholar 

  18. K. Suzuki, S.Y. Lee, Prog. Theor. Phys. 64, 2091 (1980)

    Article  ADS  Google Scholar 

  19. H. Kümmel, K.H. Lührmann, J.G. Zabolitzky, Phys. Rep. 36, 1 (1978)

    Article  ADS  Google Scholar 

  20. D.J. Dean, M. Hjorth-Jensen, Phys. Rev. C 69, 054320 (2004)

    Article  ADS  Google Scholar 

  21. M.H. Kalos, Phys. Rev. 128, 1791 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  22. J. Carlson, Phys. Rev. C 36, 2026 (1987)

    Article  ADS  Google Scholar 

  23. K.E. Schmidt, S. Fantoni, Phys. Lett. B 446, 99 (1999)

    Article  ADS  Google Scholar 

  24. D. Lee, Prog. Part. Nucl. Phys. 64, 117 (2009)

    Article  ADS  Google Scholar 

  25. S.E. Koonin, D.J. Dean, K. Langanke, Phys. Rep. 278, 1 (1997)

    Article  ADS  Google Scholar 

  26. T. Otsuka et al., Prog. Part. Nucl. Phys. 47, 319 (2001)

    Article  ADS  Google Scholar 

  27. S.C. Pieper, R.B. Wiringa, Ann. Rev. Nucl. Part. Sci. 51, 53 (2001)

    Article  ADS  Google Scholar 

  28. A. de Shalit, H. Feshbach, Theoretical Nuclear Physics: Nuclear Structure (Wiley, New York, 1974)

    Google Scholar 

  29. P. Navratil, B.R. Barrett, Phys. Rev. C 57, 562 (1998)

    Article  ADS  Google Scholar 

  30. N. Barnea, W. Leidemann, G. Orlandini, Phys. Rev. C 61, 054001 (2000)

    Article  ADS  Google Scholar 

  31. G. Orlandini, M. Traini, Rep. Prog. Phys. 54, 257 (1991)

    Article  ADS  Google Scholar 

  32. R. Rosenfelder, Ann. Phys. 128, 188 (1980)

    Article  ADS  Google Scholar 

  33. V.D. Efros, W. Leidemann, G. Orlandini, Phys. Lett. B 338, 130 (1994)

    Article  ADS  Google Scholar 

  34. S. Martinelli et al., Phys. Rev. C 52, 1778 (1995)

    Article  ADS  Google Scholar 

  35. J. Golak, R. Skibinski, W. Glöckle, H. Kamada, A. Nogga, H. Witala, V.D. Efros, W. Leidemann, G. Orlandini, E.L. Tomusiak, Nucl. Phys. A707, 365 (2002)

    Article  ADS  Google Scholar 

  36. V.D. Efros, W. Leidemann, G. Orlandini, E.L. Tomusiak, Phys. Rev. C 69, 044001 (2004)

    Article  ADS  Google Scholar 

  37. N. Barnea, W. Leidemann, G. Orlandini, V.D. Efros, E.L. Tomusiak, Few-Body Syst. C 39, 1 (2006)

    Article  ADS  Google Scholar 

  38. I. Stetcu, B.R. Barrett, P. Navrátil, J.P. Vary, Phys. Rev. C 71, 044325 (2005)

    Article  ADS  Google Scholar 

  39. D. Gazit, S. Bacca, N. Barnea, W. Leidemann, G. Orlandini, Phys. Rev. Lett. 96, 112301 (2006)

    Article  ADS  Google Scholar 

  40. S. Bacca, N. Barnea, W. Leidemann, G. Orlandini, Phys. Rev. C 69, 057001 (2004)

    Article  ADS  Google Scholar 

  41. S. Bacca, H. Arenhoevel, N. Barnea, W. Leidemann, G. Orlandini, Phys. Lett. B 603, 159 (2004)

    Article  ADS  Google Scholar 

  42. D. Gazit, N. Barnea, Nucl. Phys. A 790, 356 (2007)

    Article  ADS  Google Scholar 

  43. S. Bacca, N. Barnea, G. Hagen, M. Miorelli, G. Orlandini, T. Papenbrock, Phys. Rev. C 90, 064619 (2014)

    Article  ADS  Google Scholar 

  44. W. Leidemann, Phys. Rev. C 91, 054001 (2015)

    Article  ADS  Google Scholar 

  45. V.D. Efros, W. Leidemann, G. Orlandini, N. Barnea, J. Phys. G Nucl. Part. Phys. 34, R459 (2007)

    Article  ADS  Google Scholar 

  46. A. Roggero, F. Pederiva, G. Orlandini, Phys. Rev. B 88, 094302 (2013)

    Article  ADS  Google Scholar 

  47. V.D. Efros, Sov. J. Nucl. Phys. 41, 949 (1985)

    Google Scholar 

  48. V.D. Efros, W. Leidemann, G. Orlandini, Few-Body Syst. 14, 151 (1993)

    Article  ADS  Google Scholar 

  49. M. Miorelli, S. Bacca, N. Barnea, G. Hagen, G.R. Jansen, G. Orlandini, T. Papenbrock, Phys. Rev. C 94, 034317. http://journals.aps.org/prc/abstract/10.1103/PhysRevC.94.034317

  50. E.T. Jaynes, Information theory and statistical mechanics, in Statistical Physics, ed. by K. Ford (Benjamin, New York, 1963), p. 181

    Google Scholar 

  51. A.N. Tikhonov, V.Y. Arsenin, Solutions of Ill–Posed Problems (Winston, Washington, 1977)

    MATH  Google Scholar 

  52. D. Andreasi, W. Leidemann, C. Reiss, M. Schwamb, Eur. Phys. J. A 24, 361 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppina Orlandini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Orlandini, G. (2017). Ab Initio Methods for Nuclear Structure and Reactions: From Few to Many Nucleons. In: Hjorth-Jensen, M., Lombardo, M., van Kolck, U. (eds) An Advanced Course in Computational Nuclear Physics. Lecture Notes in Physics, vol 936. Springer, Cham. https://doi.org/10.1007/978-3-319-53336-0_7

Download citation

Publish with us

Policies and ethics