Skip to main content

A Lower Bound of the cd-Chromatic Number and Its Complexity

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10156))

Included in the following conference series:

Abstract

The cd-coloring is motivated by the super-peer architecture in peer-to-peer resource sharing technology. A vertex set partition of a graph G into k independent sets \(V_1, V_2, \ldots , V_k\) is called a k-color domination partition (k-cd-coloring) of G if there exists a vertex \(u_i\in V(G)\) such that \(u_i\) dominates \(V_i\) in G for \(1 \le i \le k\) and the smallest integer k for which G admits a k-cd-coloring is called the cd-chromatic number of G, denoted by \(\chi _{cd}(G)\). A subclique is a set S of vertices of a graph G such that for any \(x,y\in S\), \(d(x,y)\ne 2\) in G and the cardinality of a maximum subclique in G is denoted by \(\omega _{s}(G)\). Clearly, \(\omega _{s}(G) \le \chi _{cd}(G)\) for a graph G.

In this paper, we explore the complexity status of Subclique: for a given graph G and a positive integer k, Subclique is to decide whether G has a subclique of size at least k. We prove that Subclique is NP-complete for (i) bipartite graphs, (ii) chordal graphs, and (iii) the class of H-free graphs when H is a fixed graph on 5-vertices. In addition, we prove that Subclique for the class of H-free graphs is polynomial time solvable only if H is an induced subgraph of \(P_4\); otherwise the problem is NP-complete. Moreover, Subclique is polynomial time solvable for trees, split graphs, and co-bipartite graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amin, S.M., Wollenberg, B.F.: Toward a smart grid. IEEE Power Energy Mag. 3, 34–41 (2005)

    Article  Google Scholar 

  2. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution technologies. ACM Comput. Surv. 36, 335–371 (2004)

    Article  Google Scholar 

  3. Arumugam, S., Chandrasekar, K.R., Misra, N., Philip, G., Saurabh, S.: Algorithmic aspects of dominator colorings in graphs. In: Combinatorial Algorithms, pp. 19–30 (2011)

    Google Scholar 

  4. Canali, C., Renda, M.E., Santi, P., Burresi, S.: Enabling efficient peer-to-peer resource sharing in wireless mesh networks. IEEE Trans. Mob. Comput. 9, 333–347 (2010)

    Article  Google Scholar 

  5. Formanowicz, P., Tanaś, K.: A survey of graph coloring - its types, methods and applications. Found. Comput. Decis. Sci. 37, 223–238 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., New York (1990)

    MATH  Google Scholar 

  7. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM J. Comput. 1, 180–187 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gera, R., Horton, S., Rasmussen, C.: Dominator colorings and safe clique partitions. Congr. Numer. 181, 19–32 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Hȧstad, J.: Clique is hard to approximate within \(n^{1-\epsilon }\). Acta Math. 182, 105–142 (1999)

    Article  MathSciNet  Google Scholar 

  10. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  11. Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating \(k\)-set packing. Comput. Complex. 15, 20–39 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations. Plenum Press, New York (1972)

    Google Scholar 

  13. Krithika, R., Rai, A., Saurabh, S., Tale, P.: Parameterized and Exact Algorithms for Class Domination Coloring. http://www.imsc.res.in/~ashutosh/papers/cd_coloring.pdf (manuscript)

  14. Löser, A., Naumann, F., Siberski, W., Nejdl, W., Thaden, U.: Semantic overlay clusters within super-peer networks. In: Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) DBISP2P 2003. LNCS, vol. 2944, pp. 33–47. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24629-9_4

    Chapter  Google Scholar 

  15. Merouane, H.B., Chellali, M.: On the dominator colorings in trees. Discuss. Math. Gr. Theory 32(4), 677–683 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Micali, S., Vazirani, V.V.: An \(O(\sqrt{\left|V\right|}\left|E \right|)\) algorithm for finding maximum matchings in general graphs. In: Proceedings of the 21st IEEE Symposium on Foundations of Computer Science, pp. 17–27 (1980)

    Google Scholar 

  17. Monti, A., Ponci, F., Benigni, A., Liu, J.: Distributed intelligence for smart grid control. In: International School on Nonsinusoidal Currents and Compensation, 15–18 June 2010, Łagów, Poland (2010)

    Google Scholar 

  18. Poljak, S.: A note on the stable sets and coloring of graphs. Commun. Math. Univ. Carolin. 15, 307–309 (1974)

    MathSciNet  MATH  Google Scholar 

  19. Shalu, M.A., Sandhya, T.P.: The cd-coloring of graphs. In: Govindarajan, S., Maheshwari, A. (eds.) CALDAM 2016. LNCS, vol. 9602, pp. 337–348. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29221-2_29

    Chapter  Google Scholar 

  20. Venkatakrishnan, Y.B., Swaminathan, V.: Color class domination numbers of some classes of graphs. Algebra Discret. Math. 18, 301–305 (2014)

    MATH  Google Scholar 

  21. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, USA (2000)

    Google Scholar 

Download references

Acknowledgment

The authors wish to thank the anonymous referees whose suggestions improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Sandhya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Shalu, M.A., Vijayakumar, S., Sandhya, T.P. (2017). A Lower Bound of the cd-Chromatic Number and Its Complexity. In: Gaur, D., Narayanaswamy, N. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2017. Lecture Notes in Computer Science(), vol 10156. Springer, Cham. https://doi.org/10.1007/978-3-319-53007-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53007-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53006-2

  • Online ISBN: 978-3-319-53007-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics