Skip to main content

Deep Learning Architectures for DNA Sequence Classification

  • Conference paper
  • First Online:
Fuzzy Logic and Soft Computing Applications (WILF 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10147))

Included in the following conference series:

Abstract

DNA sequence classification is a key task in a generic computational framework for biomedical data analysis, and in recent years several machine learning technique have been adopted to successful accomplish with this task. Anyway, the main difficulty behind the problem remains the feature selection process. Sequences do not have explicit features, and the commonly used representations introduce the main drawback of the high dimensionality. For sure, machine learning method devoted to supervised classification tasks are strongly dependent on the feature extraction step, and in order to build a good representation it is necessary to recognize and measure meaningful details of the items to classify. Recently, neural deep learning architectures or deep learning models, were proved to be able to extract automatically useful features from input patterns. In this work we present two different deep learning architectures for the purpose of DNA sequence classification. Their comparison is carried out on a public data-set of DNA sequences, for five different classification tasks.

G. Lo Bosco and M.A. Di Gangi—Both authors have the same contribution to this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altschul, S., Gish, W., Miller, W., et al.: Basic local alignment search tool. J. Mol. Biol. 25(3), 403–410 (1990)

    Article  Google Scholar 

  2. Lipman, D., Pearson, W.: Rapid and sensitive protein similarity searches. Science 227(4693), 1435–1441 (1985)

    Article  Google Scholar 

  3. Vinga, S., Almeida, J.: Alignment-free sequence comparison a review. Bioinformatics 19(4), 513–523 (2003)

    Article  Google Scholar 

  4. Pinello, L., Lo Bosco, G., Yuan, G.-C.: Applications of alignment-free methods in epigenomics. Brief. Bioinform. 15(3), 419–430 (2014)

    Article  Google Scholar 

  5. Pinello, L., Lo Bosco, G., Hanlon, B., Yuan, G.-C.: A motif-independent metric for DNA sequence specificity. BMC Bioinform. 12, 1–9 (2011)

    Article  Google Scholar 

  6. Lo Bosco, G., Pinello, L.: A new feature selection methodology for K-mers representation of DNA sequences. In: Serio, C., Liò, P., Nonis, A., Tagliaferri, R. (eds.) CIBB 2014. LNCS, vol. 8623, pp. 99–108. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24462-4_9

    Chapter  Google Scholar 

  7. Lo Bosco, G.: Alignment free dissimilarities for nucleosome classification. In: Angelini, C., Rancoita, P.M.V., Rovetta, S. (eds.) CIBB 2015. LNCS, vol. 9874, pp. 114–128. Springer, Heidelberg (2016). doi:10.1007/978-3-319-44332-4_9

    Chapter  Google Scholar 

  8. Farabet, C., Couprie, C., Najman, L., et al.: Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1915–1929 (2013)

    Article  Google Scholar 

  9. Tompson, J.J., Jain, A., LeCun, Y., et al.: Joint training of a convolutional network and a graphical model for human pose estimation. In: Advances in Neural Information Processing Systems, pp. 1799–1807 (2014)

    Google Scholar 

  10. Kiros, R., Zhu, Y., Salakhutdinov, R.R., et al.: Skip-thought vectors. In: Advances in Neural Information Processing Systems, pp. 3276–3284 (2015)

    Google Scholar 

  11. Li, J., Luong, M.-T., Jurafsky, D.: A hierarchical neural autoencoder for paragraphs and documents. In: Proceedings of 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, pp. 1106–1115 (2015)

    Google Scholar 

  12. Luong, M.-T., Pham, H., Manning, C.D.: Effective approaches attention-based neural machine translation. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, pp. 1412–1421 (2015)

    Google Scholar 

  13. Cho, K., Van Merrienboer, B., Gulcehre, C., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734 (2014)

    Google Scholar 

  14. Chatterjee, R., Farajian, M.A., Conforti, C., Jalalvand, S., Balaraman, V., Di Gangi, M.A., Ataman, D., Turchi, M., Negri, M., Federico, M.: FBK’s neural machine translation systems for IWSLT 2016. In: Proceedings of 13th International Workshop on Spoken Language Translation (IWSLT 2016) (2016)

    Google Scholar 

  15. Seonwoo, M., Byunghan, L., Sungroh, Y.: Deep learning in bioinformatics. In: Briefings in Bioinformatics (2016)

    Google Scholar 

  16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  17. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

    MATH  Google Scholar 

  18. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  19. Bridle, J.S.: Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In: Soulié, F.F., Hérault, J. (eds.) Neurocomputing, pp. 227–236. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  20. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR, abs/1301.3781 (2013)

    Google Scholar 

  21. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543, October 2014

    Google Scholar 

  22. Dos Santos, C.N., Zadrozny, B.: Learning character-level representations for part-of-speech tagging. In: Proceedings of the 31st International Conference on Machine Learning (ICML), pp. 1818–1826 (2014)

    Google Scholar 

  23. Rizzo, R., Fiannaca, A., La Rosa, M., Urso, A.: A deep learning approach to dna sequence classification. In: Angelini, C., Rancoita, P.M.V., Rovetta, S. (eds.) CIBB 2015. LNCS, vol. 9874, pp. 129–140. Springer, Heidelberg (2016). doi:10.1007/978-3-319-44332-4_10

    Chapter  Google Scholar 

  24. Caruana, R.: Multi-task learning: a knowledge-based source of inductive bias. Mach. Learn. 28, 41–75 (1997)

    Article  Google Scholar 

  25. Drancourt, M., Berger, P., Raoult, D.: Systematic \(16S\) rRNA gene sequencing of atypical clinical isolates identified 27 new bacterial species associated with humans. J. Clin. Microbiol. 42(5), 2197–2202 (2004)

    Article  Google Scholar 

  26. https://rdp.cme.msu.edu/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giosué Lo Bosco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lo Bosco, G., Di Gangi, M.A. (2017). Deep Learning Architectures for DNA Sequence Classification. In: Petrosino, A., Loia, V., Pedrycz, W. (eds) Fuzzy Logic and Soft Computing Applications. WILF 2016. Lecture Notes in Computer Science(), vol 10147. Springer, Cham. https://doi.org/10.1007/978-3-319-52962-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52962-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52961-5

  • Online ISBN: 978-3-319-52962-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics