Skip to main content

Global Weak Solutions of PDEs for Compressible Media: A Compactness Criterion to Cover New Physical Situations

  • Chapter
  • First Online:
Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics

Part of the book series: Springer INdAM Series ((SINDAMS,volume 17))

Abstract

This short paper is an introduction of the memoir recently written by the two authors (see Bresch and Jabin, Global existence of weak solutions for compressible Navier–Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor, arXiv:1507.04629, 2015, submitted) which concerns the resolution of two longstanding problems: Global existence of weak solutions for compressible Navier–Stokes equations with thermodynamically unstable pressure and with anisotropic stress tensor. We focus here on a Stokes-like system which can for instance model flows in a compressible tissue in biology or in a compressible porous media in petroleum engineering. This allows to explain, on a simpler but still relevant and important system, the tools recently introduced by the authors and to discuss the important results that have been obtained on the compressible Navier–Stokes equations. It is finally a real pleasure to dedicate this paper to G. Métivier for his 65’s Birthday.

D. Bresch is partially supported by the ANR- 13-BS01-0003-01 project DYFICOLTI.

P.–E. Jabin is partially supported by NSF Grant 1312142 and by NSF Grant RNMS (Ki-Net) 1107444

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Ben Belgacem, P.–E. Jabin, Compactness for nonlinear continuity equations. J. Funct. Anal. 264 (1), 139–168 (2013)

    Google Scholar 

  2. J. Bourgain, H. Brézis, P. Mironescu, Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations. In Honour of Professor Alain Bensoussan’s 60th Birthday. Proceedings of the Conference, Paris, 4 Dec 2000, ed. by J.L. Menaldi, et al. (IOS Press/Amsterdam, Tokyo/Ohmsha, 2001), pp. 439–455

    Google Scholar 

  3. D. Bresch, T. Colin, E. Grenier, B. Ribba, O. Saut, A viscoelastic model for avascular tumor growth. Discrete. Cont. Dyn. Syst. Suppl. 101–108 (2009)

    Google Scholar 

  4. D. Bresch, P.–E. Jabin, Global existence of weak solutions for compressible Navier–Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor (2015, submitted)

    Google Scholar 

  5. G. Crippa, C. DeLellis, Estimates and regularity results for the DiPerna-Lions flow. J. Reine Angew. Math. 2008 (616), 15–46 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Donatelli, K. Trivisa, On a nonlinear model for tumor growth: global in time weak solutions. J. Math. Fluid Mech. 16 (4), 787–803 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Feireisl, Compressible Navier–Stokes equations with a Non-Monotone pressure law. J. Diff. Equ. 184 (1), 97–108 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Feireisl, Dynamics of Viscous Compressible Fluids. Oxford Lecture Series in Mathematics and Its Applications, vol. 26 (Oxford University Press, Oxford, 2004). ISBN:0-19-852838-8

    Google Scholar 

  9. E. Feireisl, A. Novotny, Singular Limits in Thermodynamics of Viscous Fluids. Advance in Mathematical Fluid Mechanics (Birkhuser, Basel, 2009)

    Google Scholar 

  10. G. Gagneux, M. Madaune-Tort, Analyse mathématique de modèles non linéaires de l’ingénierie pétrolière. St́ries: mathématiques et applications, vol. 22 (Springer, 1996)

    Google Scholar 

  11. P.–L. Lions, Mathematical Topics in Fluid Mechanics, Vol. II: Compressible Models. Oxford Lecture Series in Mathematics and Its Applications (Clarendon Press/Oxford University Press, Oxford/New York, 1998)

    Google Scholar 

  12. A. Novotny, I. Straskraba. Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and Its Applications (Oxford University Press, Oxford/New York, 2004)

    Google Scholar 

  13. A.C. Ponce, An estimate in the spirit of Poincaré inequality. J. Eur. Math. Soc. (JEMS) 6 (1), 1–15 (2004)

    Google Scholar 

  14. E.M. Stein, Harmonic Analysis, 2nd edn. (Princeton University Press, Princeton, 1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Bresch .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix, let us give different results which are used in the paper. The interested reader is referred to [4] for details and proofs but also [14]. These concern Maximal functions, Square functions and translation of operators. First we remind the well known inequality

$$\displaystyle{ \vert \varPhi (x) -\varPhi (y)\vert \leq C\,\vert x - y\vert \,(M\vert \nabla \varPhi \vert (x) + M\vert \nabla \varPhi \vert (y)), }$$
(36)

where M is the localized maximal operator

$$\displaystyle{ M\,f(x) =\sup _{r\leq 1} \frac{1} {\vert B(0,r)\vert }\,\int _{B(0,r)}f(x + z)\,dz. }$$
(37)

Let us mention several mathematical properties that may be proved, see [4]. First one has

Lemma A.1.

There exists C > 0 s.t. for any \(u \in W^{1,1}(\mathbb{T}^{d})\) , one has

$$\displaystyle{\vert u(x) - u(y)\vert \leq C\,\vert x - y\vert \,(D_{\vert x-y\vert }u(x) + D_{\vert x-y\vert }u(y)),}$$

where we denote

$$\displaystyle{D_{h}u(x) = \frac{1} {h}\,\int _{\vert z\vert \leq h}\frac{\vert \nabla u(x + z)\vert } {\vert z\vert ^{d-1}} \,dz.}$$

Note that this result implies the estimate (36) as

Lemma A.2.

There exists C > 0, for any \(u \in W^{1,p}(\mathbb{T}^{d})\) with p ≥ 1

$$\displaystyle{D_{h}\,u(x) \leq C\,M\vert \nabla u\vert (x).}$$

The key improvement in using D h is that small translations of the operator D h are actually easy to control

Lemma A.3.

Let \(u \in H^{1}(\mathbb{T}^{d})\) then have the following estimates

$$\displaystyle{ \int _{h_{0}}^{1}\int _{ \mathbb{T}^{d}}\overline{K}_{h}(z)\,\|D_{\vert z\vert }\,u(.) - D_{\vert z\vert }\,u(. + z)\|_{L^{2}}\,dz\,\frac{dh} {h} \leq C\,\vert \log h_{0}\vert ^{1/2}\,\|u\|_{ H^{1}}. }$$
(38)

This lemma is critical and explain why we propagate a quantity integrated with respect to h with a weight dhh namely with the Kernel \(\mathcal{K}_{h_{0}}\). The full proof is rather classical and can be found in [4] for any L p space but we give a brief sketch here (which is simpler as Lemma A.3 is L 2 based and we can use Fourier transform).

Proof (Sketch of the proof of Lemma  A.3 .).

Note that we can write

$$\displaystyle{D_{h}\,u(x) = L_{h} \star \nabla u,\quad L(x) = \frac{1_{\vert x\vert \leq 1}} {\vert x\vert ^{d-1}},\quad L_{h}(z) = h^{-d}\,L(z/h),}$$

where L h is hence a usual convolution operator and L ∈ W s, 1 for any s < 1. Now

$$\displaystyle\begin{array}{rcl} & & \int _{h_{0}}^{1}\int _{ \mathbb{T}^{d}}\overline{K}_{h}(z)\,\|D_{\vert z\vert }\,u(.) - D_{\vert z\vert }\,u(. + z)\|_{L^{2}}\,dz\,\frac{dh} {h} {}\\ & & \qquad \leq C\,\int _{S^{d-1}}\int _{0}^{1}\|L_{ r} \star \nabla u(.) - L_{r} \star \nabla u(. + r\,\omega )\|_{L^{2}}\, \frac{dr} {r + h_{0}}\,d\omega {}\\ & & \qquad \leq C\,\vert \log h_{0}\vert ^{1/2}\,\left (\int _{ S^{d-1}}\int _{0}^{1}\|L_{ r} \star \nabla u(.) - L_{r} \star \nabla u(. + r\,\omega )\|_{L^{2}}^{2}\, \frac{dr} {r + h_{0}}\,d\omega \right )^{1/2}. {}\\ \end{array}$$

For any ω ∈ S d−1, define L r ω = L r (. ) − L r (. + rω). Calculate by Fourier transform

$$\displaystyle{\int _{0}^{1}\|L_{ r} \star \nabla u(.) - L_{r} \star \nabla u(. + r\,\omega )\|_{L^{2}}^{2}\, \frac{dr} {r + h_{0}} =\int _{ 0}^{1}\sum _{ \xi \in \mathbb{T}^{d}}\vert \hat{L}_{r}^{\omega }\vert ^{2}(\xi )\,\vert \xi \vert ^{2}\vert \hat{u}\vert ^{2}(\xi )\, \frac{dr} {r + h_{0}}.}$$

But \(\hat{L}_{r}^{\omega } = (1 - e^{ir\,\xi \cdot \omega })\,\hat{L}(r\,\xi )\) and furthermore \(\vert \hat{L}(r\,\xi )\vert \leq C\,(1 + \vert r\,\xi \vert )^{-s}\) for some s > 0 since L ∈ W s, 1. Therefore

$$\displaystyle{\int _{0}^{1}\vert \hat{L}_{ r}^{\omega }\vert ^{2}(\xi )\, \frac{dr} {r + h_{0}} \leq C,}$$

for some constant C independent of ξ, ω and h 0. This is of course the famous square function calculation and lets us conclude.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bresch, D., Jabin, PE. (2017). Global Weak Solutions of PDEs for Compressible Media: A Compactness Criterion to Cover New Physical Situations. In: Colombini, F., Del Santo, D., Lannes, D. (eds) Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics. Springer INdAM Series, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-52042-1_2

Download citation

Publish with us

Policies and ethics