Skip to main content

Factors Influencing the Occurrence and the Fate of E. coli Population in Karst Hydrosystems

  • Conference paper
  • First Online:
Karst Groundwater Contamination and Public Health

Abstract

The persistence of Escherichia coli, a bacterial indicator of water quality, is relevant to assess the health risk associated with aquifer use for drinking water supplies. In order to investigate the fate of E. coli in a karst aquifer, populations of both viable and culturable E. coli were monitored, according to their settling velocities, for contrasting hydrological conditions. Solid-phase cytometry was carried out to quantify the viable E. coli, and both the genetic diversity and the resistance to antibiotics of E. coli were investigated. This study shows that: (i) at the sinkhole, the structure of the E. coli population varied with the hydrological conditions and land use; (ii) the input of E. coli strains resistant to antibiotics was linked to contamination of human origin during rainfall events; (iii) irrespective of the hydrological conditions, the karst system is a permanent reservoir of viable but non-culturable E. coli even when culturable E. coli became undetectable at the well; and (iv) following a rainfall event or during a dry period, both populations of culturable and viable but non-culturable E. coli are mainly associated with non-settleable particles, corresponding to organic or organo-mineral microflocs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arana, I., M. Orruño, D. Pérez-Pascual, C. Seco, A. Muela, and I. Barcina. 2007. Inability of Escherichia coli to resuscitate from the viable but non culturable state. FEMS Microbiology and Ecology 62: 1–11.

    Article  Google Scholar 

  • Bakalowicz, M. 2005. Karst groundwater: A challenge for new resources. Hydrogeology Journal 13: 148–160.

    Article  Google Scholar 

  • Bartram, J., and S. Cairncross. 2010. Hygiene, sanitation, and water: Forgotten foundations of health. PLoS Medicine 7: e1000367.

    Article  Google Scholar 

  • Bergholz, P., J.D. Noar, and D.H. Buckley. 2011. Environmental patterns are imposed on the population structure of Escherichia coli after fecal deposition. Applied Environmental Microbiolology 77: 211–219.

    Article  Google Scholar 

  • Berthe, T., M. Ratajczak, O. Clermont, E. Denamur, and F. Petit. 2013. Evidence for coexistence of distinct Escherichia coli populations in various aquatic environments and their survival in estuary water. Applied and Environmental Microbiology 79: 4684–4693.

    Article  Google Scholar 

  • Carlos, C., M.M. Pires, N.C. Stoppe, E.M. Hachich, M.I. Sato, T.A. Gomes, L.A. Amaral, and L.M. Ottoboni. 2010. Escherichia coli phylogenetic group determination and its application in the identification of the major animal source of fecal contamination. BMC Microbiology 10: 1.

    Article  Google Scholar 

  • Characklis, G.W., J.D. Mackenzie, O.D. Simmons III, C.A. Likirdopulos, L.A.H. Krometis, and M.D. Sobsey. 2005. Microbial partitioning to settleable particles in stormwater. Water Research 39: 1773–1782.

    Article  Google Scholar 

  • Clermont, O., M. Olier, C. Hoede, L. Diancourt, S. Brisse, M. Keroudean, J. Glodt, B. Picard, E. Oswald, and E. Denamur. 2011. Animal and human pathogenic Escherichia coli strains share common genetic backgrounds. Infection Genetic Evolution 11: 654–662.

    Article  Google Scholar 

  • Clermont, O., J.K. Christenson, E. Denamur, and D.M. Gordon. 2013. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups: A new E. coli phylo-typing method. Environmental Microbiology Reports 5: 58–65.

    Article  Google Scholar 

  • Dussart-Baptista, L., N. Massei, J.-P. Dupont, and T. Jouenne. 2003. Transfer of bacteria-contaminated particles in a karst aquifer: Evolution of contaminated materials from a sinkhole to a spring. Journal of Hydrology 284: 285–295.

    Article  Google Scholar 

  • Fournier, M., N. Massei, M. Bakalowicz, L. Dussart-Baptista, J. Rodet, and J.-P. Dupont. 2007. Using turbidity dynamics and geochemical variability as a tool for understanding the behavior and vulnerability of a karst aquifer. Hydrogeology Journal 15: 689–704.

    Article  Google Scholar 

  • Garcia-Armisen, T., and P. Servais. 2009. Partitioning and fate of particle-associated E. coli in river water. Water Environmental Research 81: 21–28.

    Google Scholar 

  • Gordon, D.M. 2010. Strain typing and the ecological structure of Escherichia coli. Journal AOAC International 93: 974–984.

    Google Scholar 

  • Hales, S., and C. Corvalan. 2006. Public health emergency on planet Earth: Insights from the Millennium Ecosystem Assessment. EcoHealth 3: 130–135.

    Article  Google Scholar 

  • Ishii, S., and M.J. Sadowsky. 2008. Escherichia coli in the environment: Implications for water quality and human health. Microbiology in the Environment 23: 101–108.

    Article  Google Scholar 

  • Jamieson, R., D.M. Joy, H. Lee, R. Kostaschuk, and R. Gordon. 2005. Transport and deposition of sediment-associated Escherichia coli in natural streams. Water Research 39: 2665–2675.

    Article  Google Scholar 

  • Kaper, J.B., J.P. Nataro, and H.L.T. Mobley. 2004. Pathogenic Escherichia coli. Nature Reviews of Microbiology 2: 123–140.

    Article  Google Scholar 

  • Keep, N.H., J.M. Ward, G. Robertson, M. Cohen-Gonsaud, and B. Henderson. 2006. Bacterial resuscitation factors: Revival of viable but non culturable bacteria. Cell Molecular Life Science 63: 2555–2559.

    Article  Google Scholar 

  • Krometis, L.A.H., G.W. Characklis, O. Simmons III, J.D. Mackenzie, C.A. Likirdopulos, and M.D. Sobsey. 2007. Intra-storm variability in microbial partitioning and microbial loading rates. Water Research 41: 506–516.

    Article  Google Scholar 

  • Laroche, E., F. Petit, M. Fournier, and B. Pawlak. 2010. Transport of antibiotic-resistant Escherichia coli in a public rural karst water supply. Journal of Hydrology 392: 12–21.

    Article  Google Scholar 

  • Lemarchand, K., N. Parthuisot, P. Catala, and P. Lebaron. 2001. Comparative assessment of epifluorescence microscopy, flow cytometry and solid-phase cytometry used in the enumeration of specific bacteria in water. Aquatic Microbiology and Ecology 25: 301–309.

    Article  Google Scholar 

  • Magiorakos, A.-P., A. Srinivasan, R.B. Carey, Y. Carmeli, M.E. Falagas, C.G. Giske, S. Harbarth, J.F. Hindler, G. Kahlmeter, B. Olsson-Liljequist, et al. 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology of Infections 18: 268–281.

    Article  Google Scholar 

  • Mahler, B.J., J.-C. Personné, G.F. Lods, and C. Drogue. 2000. Transport of free and particulate-associated bacteria in karst. Journal of Hydrology 23: 179–193.

    Article  Google Scholar 

  • Massei, N., M. Lacroix, H.Q. Wang, B.J. Mahler, and J.P. Dupont. 2002. Transport of suspended solids from a karstic to an alluvial aquifer: The role of the karst/alluvium interface. Journal of Hydrology 260: 88–101.

    Article  Google Scholar 

  • Massei, N., H.Q. Wang, J.-P. Dupont, J. Rodet, and B. Laignel. 2003. Assessment of direct transfer and resuspension of particles during turbid floods at a karstic spring. Journal of Hydrology 275: 109–121.

    Article  Google Scholar 

  • Muirhead, R.W., R.P. Collins, and P.J. Bremer. 2006. Numbers and transported state of Escherichia coli in runoff direct from fresh cowpats under simulated rainfall. Letters in Applied Microbiology 42: 83–87.

    Article  Google Scholar 

  • Nnane, D.E., J.E. Ebdon, and D.H. Taylor. 2011. Integrated analysis of water quality parameters for cost-effective faecal pollution management in river catchments. Water Research 45: 2235–2246.

    Article  Google Scholar 

  • Oliver, D.J. 2010. Recent findings on the viable but non culturable state in pathogenic bacteria. FEMS Microbiology Review 34: 415–425.

    Article  Google Scholar 

  • Özkanca, R., F. Saribiyik, K. Isik, N. Sahin, E. Kariptas, and K.P. Flint. 2009. Resuscitation and quantification of stressed Escherichia coli K12 NCTC8797 in water samples. Microbiology Research 164: 212–220.

    Article  Google Scholar 

  • Pachepsky, Y.A., and D.R. Shelton. 2011. Escherichia coli and fecal coliforms in freshwater and estuarine sediments. Critical Reviews of Environmental Science and Technology 41: 1067–1110.

    Article  Google Scholar 

  • Page, R.M., S. Scheidler, E. Polat, P. Svoboda, and P. Huggenberger. 2012. Faecal indicator bacteria: groundwater dynamics and transport following precipitation and river water infiltration. Water, Air, and Soil pollution 223: 2771–2782.

    Article  Google Scholar 

  • Pronk, M., N. Goldsheider, and J. Zopfi. 2007. Particle-size distribution as indicator for fecal bacteria contamination of drinking water from karst springs. Environmental Science and Technology 41: 8400–8405.

    Article  Google Scholar 

  • Pronk, M., N. Goldsheider, and J. Zopfi. 2006. Dynamics and interaction of organic carbon, turbidity and bacteria in a karst aquifer system. Hydrogeology Journal 14: 473–484.

    Article  Google Scholar 

  • Ratajczak, M., E. Laroche, T. Berthe, O. Clermont, B. Pawlak, E. Denamur, and F. Petit. 2010. Influence of hydrological conditions on the Escherichia coli population structure in the water of a creek on a rural watershed. BMC Microbiology 10: 222.

    Article  Google Scholar 

  • Rozen, Y., and S. Belkin. 2001. Survival of enteric bacteria in seawater. FEMS Microbiology Reviews 25: 513–529.

    Article  Google Scholar 

  • Sinclair, A., D. Hebb, R. Jamieson, R. Gordon, K. Benedict, K. Fuller, G.W. Stratton, and A. Madani. 2009. Growing season surface water loading of fecal indicator organisms within a rural watershed. Water Research 43: 1199–1206.

    Article  Google Scholar 

  • Soupir, M.L., S. Mostaghimi, and T. Dillaha. 2010. Attachment of Escherichia coli and Enterococci to particles in runoff. Journal of Environmental Quality 39: 1019–1027.

    Article  Google Scholar 

  • Tenaillon, O., D. Skurnik, B. Picard, and E. Denamur. 2010. The population genetics of commensal Escherichia coli. Nature Reviews of Microbiology 8: 207–217.

    Article  Google Scholar 

  • Trevors, J.T. 2011. Viable but non culturable (VBNC) bacteria: Gene expression in planktonic and biofilm cells. Journal of Microbiological Methods 86: 266–273.

    Article  Google Scholar 

  • Van Elsas, J.D., A. Semenov, R. Costa, and J.T. Trevors. 2011. Survival of Escherichia coli in the environment: Fundamental and public health aspects. ISME Journal 5: 173–183.

    Article  Google Scholar 

  • Viau, E.J., K.D. Goodwin, K.M. Yamahara, B.A. Layton, L.M. Sassoudre, S.L. Burns, H.I. Tong, S.H.C. Wong, Y. Lu, and A.B. Boehm. 2011. Bacterial pathogens in Hawaiian coastal streams—Associations with fecal indicators, land cover, and water quality. Water Research 45: 3279–3290.

    Article  Google Scholar 

  • Vital, M., F. Hammes, and T. Egli. 2008. Escherichia coli O157 grow in natural freshwater at low carbon concentration. Environmental Microbiology 10: 2387–2396.

    Article  Google Scholar 

  • Vital, M., F. Hammes, and T. Egli. 2012. Competition of Escherichia coli O157 with a drinking water bacterial community at low nutrient concentrations. Water Research 46: 6279–6290.

    Article  Google Scholar 

  • Walk, S.T., E.W. Alm, D.M. Gordon, J.L. Ram, G.A. Toranzos, J.M. Tiedje, and T.S. Whittam. 2009. Cryptic lineages of the genus Escherichia. Applied and Environmental Microbiology 75: 6534–6544.

    Article  Google Scholar 

Download references

Acknowledgements

This study was based in part on the thesis work of Mehdy Ratajczak and Emilie Laroche. The authors thank Julie Gonand and Florian Van Dooren for technical assistance and Professor Robert Lafite for the settling experiments. This work was supported by the National Water Agency Seine Normandie and the Research Federation FR CNRS SCALE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabienne Petit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Petit, F. et al. (2018). Factors Influencing the Occurrence and the Fate of E. coli Population in Karst Hydrosystems. In: White, W., Herman, J., Herman, E., Rutigliano, M. (eds) Karst Groundwater Contamination and Public Health. Advances in Karst Science. Springer, Cham. https://doi.org/10.1007/978-3-319-51070-5_25

Download citation

Publish with us

Policies and ethics