Skip to main content

Diffusion Process in a Multi-Dimension Networks: Generating, Modelling, and Simulation

  • Chapter
  • First Online:
Prediction and Inference from Social Networks and Social Media

Abstract

Social networks simulation implies two preconditions: (1) determining a population behavior and (2) simulating the information diffusion within it. A population is defined by a group of interconnected individuals possessing individual and structural behaviors in regard to information sharing. In this paper, the population generated is defined by socio-cultural features, specifically the way that people tend to link together. To this end, the definition of a unique social network is too restrictive: realistically, people are not interlinked by only one relationship. To overcome this limitation, multidimensional social networks (MSN) have been proposed to model social interactions where each dimension represents a category of relationship. The MSN architecture allows not only to better represent the diversity of human’s relations but also to define distinctive rules for the simulation of the message diffusion. We study a model of information spreading on multiplex networks, in which agents interact through multiple interaction channels or with different relationships (layers). The inner idea is that information disseminates differently according to the category of links through which the information propagates. So, this paper presents the modelling of an MSN based on social science and a simulation using propagation rules for each dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bouanan Y, El Alaoui MB, Zacharewicz G, Vallespir B (2014) Using DEVS and cell-DEVS for modelling of information impact on individuals in social network. In: IFIP international conference on advances in production management systems. Springer, Berlin, Heidelberg, September 2014, pp 409–416

    Google Scholar 

  2. Svenmarck P, Huibregtse JN, van Vliet AJ, van Hemert DA, van Amerongen PJ, Lundin M, Sjoberg E (2010) Message dissemination in social networks for support of information operations planning. TNO defence security and safety, Soesterberg, Netherlands

    Google Scholar 

  3. Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Commun Networks 2(3):203–271

    Google Scholar 

  4. Berlingerio M, Coscia M, Giannotti F, Monreale A, Pedreschi D (2011) The pursuit of hubbiness: analysis of hubs in large multidimensional networks. J Comput Sci 2(3):223–237

    Article  Google Scholar 

  5. Forestier M, Velcin J, Zighed D (2011) Extracting social networks to understand interaction. In: 2011 international conference on advances in social networks analysis and mining (ASONAM). IEEE, July 2011, pp 213–219

    Google Scholar 

  6. Pappalardo L, Rossetti G, Pedreschi D (2012) How well do we know each other? Detecting tie strength in multidimensional social networks. In: IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM). IEEE, August 2012, pp 1040–1045

    Google Scholar 

  7. Forestier M, Bergier JY, Bouanan Y, Ribault J, Vallespir B, Faucher C (2015) Generating multidimensional social network to simulate the propagation of information. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining. ACM, August 2015, pp 1324–1331

    Google Scholar 

  8. Bollobás B (1998) Modern graph theory. Springer, Berlin

    Book  MATH  Google Scholar 

  9. Newman M (2010) Networks: an introduction. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  10. Magnani M, Rossi L (2011) The ML-model for multi-layer social networks. In: 2011 international conference on advances in social networks analysis and mining (ASONAM). IEEE, July 2011, pp 5–12

    Google Scholar 

  11. Rogers EM (1962) Diffusion of innovativeness. The Free Press of Glencoe, New York

    Google Scholar 

  12. Domingos P (2005) Mining social networks for viral marketing. IEEE Intell Syst 20(1):80–82

    Article  Google Scholar 

  13. Goldenberg J, Libai B, Muller E (2001) Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark Lett 12(3):211–223

    Article  Google Scholar 

  14. Granovetter M (1978) Threshold models of collective behavior. Am J Sociol 83:1420–1443

    Article  Google Scholar 

  15. Bailey NT (1975) The mathematical theory of infectious diseases and its applications. Charles Griffin & Company Ltd., High Wycombe

    MATH  Google Scholar 

  16. Min B, Goh KI (2013) Layer-crossing overhead and information spreading in multiplex social networks. preprint arXiv:1307.2967

    Google Scholar 

  17. Erdös P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hungar Acad Sci 5:17–61

    MathSciNet  MATH  Google Scholar 

  18. Newman ME, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary degree distributions and their applications. Phys Rev E 64(2):026118

    Article  Google Scholar 

  19. Milgram S (1967) The small world problem. Psychol Today 2(1):60–67

    Google Scholar 

  20. Holland PW, Leinhardt S (1981) An exponential family of probability distributions for directed graphs. J Am Stat Assoc 76(373):33–50

    Article  MathSciNet  MATH  Google Scholar 

  21. Lazega E, Van Duijn M (1997) Position in formal structure, personal characteristics and choices of advisors in a law firm: a logistic regression model for dyadic network data. Soc Networks 19(4):375–397

    Article  Google Scholar 

  22. Frank O, Strauss D (1986) Markov graphs. J Am Stat Assoc 81(395):832–842

    Article  MathSciNet  MATH  Google Scholar 

  23. Wasserman S, Faust K (1994) Social network analysis: Methods and applications, vol 8. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  24. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  MATH  Google Scholar 

  25. Badham J, Stocker R (2010) A spatial approach to network generation for three properties: degree distribution, clustering coefficient and degree assortativity. J Artif Soc Soc Simul 13(1):11

    Google Scholar 

  26. Hofstede G, Hofstede GJ, Minkov M (1991) Cultures and organizations: software of the mind, vol 2. McGraw-Hill, London

    Google Scholar 

  27. Krackhardt D (1987) Cognitive social structures. Soc Networks 9(2):109–134

    Article  MathSciNet  Google Scholar 

  28. D’agostino G, Scala A (2014) Networks of networks: the last frontier of complexity, vol 340. Springer, Cham

    Book  Google Scholar 

  29. Berlingerio M, Coscia M, Giannotti F, Monreale A, Pedreschi D (2013) Multidimensional networks: foundations of structural analysis. World Wide Web 16(5–6):567–593

    Article  Google Scholar 

  30. Verbrugge LM (1979) Multiplexity in adult friendships. Soc Forces 57(4):1286–1309

    Article  Google Scholar 

  31. Cooley CH (1956) Social organization. Transaction Publishers, New Brunswick (U.S.A.) and London (U.K.)

    Google Scholar 

  32. McGuire WJ (1969) The nature of attitudes and attitude change. In: The handbook of social psychology, vol 3(2). Addison-Wesley, Reading, MA, pp 136–314

    Google Scholar 

  33. McPherson M, Smith-Lovin L, Cook JM (2001) Birds of a feather: homophily in social networks. Annu Rev Sociol 27:415–444

    Article  Google Scholar 

  34. Zeigler BP, Praehofer H, Kim TG (2000) Theory of modeling and simulation: integrating discrete event and continuous complex dynamic systems. Academic, San Diego

    Google Scholar 

  35. Petty RE, Cacioppo JT (1986) The elaboration likelihood model of persuasion. In: Communication and persuasion. Springer, New York, pp 1–24

    Chapter  Google Scholar 

  36. Bergier J-Y, Faucher C (2016) Persuasive communication from a military force to local civilians: a PsyOps system based on the Elaboration Likelihood Model. In: 15th IEEE international conference on cognitive informatics and cognitive computing. Stanford University, Stanford

    Google Scholar 

  37. Stiff JB, Mongeau PA (2003) Persuasive communication. Guilford Press, New York

    Google Scholar 

  38. Walther O (2004) Au-delà de l’opposition entre villes et campagnes. Éléments pour un modèle territorial dynamique en Afrique de l’Ouest. L’inform Geogr 68(4):308–319

    Google Scholar 

  39. Quesnel G, Duboz R, Ramat É (2009) The virtual laboratory environment—an operational framework for multi-modelling, simulation and analysis of complex dynamical systems. Simul Model Pract Theory 17(4):641–653

    Article  Google Scholar 

  40. Bouanan Y, Forestier M, Ribault J, Zacharewicz G, Vallespir B, Moalla N (2015) Simulating information diffusion in a multidimensional social network using the DEVS formalism (WIP). In: Proceedings of the symposium on theory of modeling & simulation: DEVS integrative M&S symposium. Society for Computer Simulation International, April 2015, pp 63–68

    Google Scholar 

  41. Friedkin NE, Johnsen EC (1999) Social influence networks and opinion change. Adv Group Process 16(1):1–29

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the SICOMORES Project No. 132936073 funded by French DGA (Direction Générale de l’Armement). It involves the following partners: IMS University of Bordeaux, LSIS University of Marseille, and MASA Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Bouanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bouanan, Y., Forestier, M., Ribault, J., Zacharewicz, G., Vallespir, B. (2017). Diffusion Process in a Multi-Dimension Networks: Generating, Modelling, and Simulation. In: Kawash, J., Agarwal, N., Ă–zyer, T. (eds) Prediction and Inference from Social Networks and Social Media. Lecture Notes in Social Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-51049-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51049-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51048-4

  • Online ISBN: 978-3-319-51049-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics