Skip to main content

Formation of Bacterial Glycerol-Based Membrane Lipids: Pathways, Enzymes, and Reactions

  • Reference work entry
  • First Online:
Biogenesis of Fatty Acids, Lipids and Membranes

Abstract

The model bacterium Escherichia coli contains the phospholipids phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine as major membrane lipids, and biosyntheses and functionalities of individual membrane lipids have mainly been studied in this organism. However, in other bacteria, additional and alternative glycerol-based membrane lipids are found, and in many cases neither their biosyntheses nor their functionalities are understood. Some Gram-negative bacteria have phosphatidylcholine in their standard repertoire, whereas many Gram-positive bacteria have glycosylated diacylglycerols and lysyl-phosphatidylglycerol in their membranes. Notably, phosphatidylinositol seems to be an essential lipid for Mycobacterium tuberculosis and Actinomycetes, and it might be formed in some proteobacteria. Under certain stress conditions, specific membrane lipids can be formed in order to minimize the stress exerted. For example, under phosphorus-limiting conditions of growth, some bacteria form glycerol-based membrane lipids lacking phosphorus such as glycolipids, sulfolipids, or betaine lipids. Challenge of proteobacteria with acid causes modifications of membrane lipids, such as formation of lysyl-phosphatidylglycerol. Modifications of the acyl residues of pre-existing glycerol-based membrane lipids include desaturation, cyclopropanation, cis-trans isomerization reactions, as well as bacterial plasmalogen biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 489.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arendt W, Groenewold MK, Hebecker S, Dickschat JS, Moser J (2013) Identification and characterization of a periplasmic aminoacyl-phosphatidylglycerol hydrolase responsible for Pseudomonas aeruginosa lipid homeostasis. J Biol Chem 288:24717–24730

    Article  CAS  Google Scholar 

  • Barák I, Muchová K, Wilkinson AJ, O’Toole PJ, Pavlendová N (2008) Lipid spirals in Bacillus subtilis and their role in cell division. Mol Microbiol 68:1315–1327

    Article  Google Scholar 

  • Benning C (1998) Biosynthesis and function of the sulfolipid sulfoquinovosyldiacylglycerol. Annu Rev Plant Physiol Plant Mol Biol 49:53–75

    Article  CAS  Google Scholar 

  • Benning C (2007) Questions remaining in sulfolipid biosynthesis: a historical perspective. Photosynth Res 92:199–203

    Article  CAS  Google Scholar 

  • Conover GM, Martinez-Morales F, Heidtman ML, Luo ZQ, Tang M, Chen C, Geiger O, Isberg RR (2008) Phosphatidylcholine synthesis is required for optimal function of Legionella pneumophila virulence determinants. Cell Microbiol 10:514–528

    CAS  PubMed  Google Scholar 

  • Cronan JE, Thomas J (2009) Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol 459:395–433

    Article  CAS  Google Scholar 

  • Danne L, Aktas M, Gleichenhagen J, Grund N, Wagner D, Schwalbe H, Hoffknecht B, Metzler-Nolte N, Narberhaus F (2015) Membrane-binding mechanism of a bacterial phospholipid N-methyltransferase. Mol Microbiol 95:313–331

    Article  CAS  Google Scholar 

  • Dare K, Shepherd J, Roy H, Seveau S, Ibba M (2014) LysPGS formation in Listeria monocytogenes has broad roles in maintaining membrane integrity beyond antimicrobial peptide resistance. Virulence 5:534–546

    Article  Google Scholar 

  • Devers EA, Wewer V, Dombrink I, Dörmann P, Hölzl G (2011) A processive glycosyltransferase involved in glycolipid synthesis during phosphate deprivation in Mesorhizobium loti. J Bacteriol 193:1377–1384

    Article  CAS  Google Scholar 

  • Dowhan W, Bogdanov M, Mileykovskaya E (2008) Functional roles of lipids in membranes. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes, 5th edn. Elsevier, Amsterdam, pp 1–37

    Google Scholar 

  • Ernst CM, Staubitz P, Mishra NN, Yang SJ, Hornig G et al (2009) The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog 5:e1000660

    Article  Google Scholar 

  • Garrett TA (2017) Major roles for minor bacterial lipids identified by mass spectrometry. Biochim Biophys Acta 1862:1319–1324

    Article  CAS  Google Scholar 

  • Geiger O, López-Lara IM, Sohlenkamp C (2013) Phosphatidylcholine biosynthesis and function in bacteria. Biochim Biophys Acta 1831:503–513

    Article  CAS  Google Scholar 

  • Goddard-Borger ED, Williams SJ (2017) Sulfoquinovose in the biosphere: occurrence, metabolism and functions. Biochem J 474:827–849

    Article  CAS  Google Scholar 

  • Goldfine H (2010) The appearance, disappearance and reappearance of plasmalogens in evolution. Prog Lipid Res 49:493–498

    Article  CAS  Google Scholar 

  • Goldfine H (2017) The anaerobic biosynthesis of plasmalogens. FEMS Lett 591:2714–2719

    Article  CAS  Google Scholar 

  • Gómez-Lunar Z, Hernández-González I, Rodriguez-Torres MD, Souza V, Olmedo-Álvarez G (2016) Microevolution analysis of Bacillus coahuilensis unveils differences in phosphorus acquisition strategies and their regulation. Front Microbiol 7:58

    Article  Google Scholar 

  • Gopalakrishnan AS, Chen YC, Temkin M, Dowhan W (1986) Structure and expression of the gene locus encoding the phosphatidylglycerophosphate synthase of Escherichia coli. J Biol Chem 261:1329–1338

    CAS  PubMed  Google Scholar 

  • Hacker S, Sohlenkamp C, Aktas M, Geiger O, Narberhaus F (2008) Multiple phospholipid N-methyltransferases with distinct substrate specificities are encoded in Bradyrhizobium japonicum. J Bacteriol 190:571–580

    Article  CAS  Google Scholar 

  • Henderson JC, Zimmerman SM, Crofts AA, Boll JM, Kuhns LG, Herrera CM, Trent MS (2016) The power of asymmetry: architecture and assembly of the Gram-negative outer membrane lipid bilayer. Annu Rev Microbiol 70:255–278

    Article  CAS  Google Scholar 

  • Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H (2008) Disclosure of the mycobacterial outer membrane. Proc Natl Acad Sci USA 105:3963–3967

    Article  CAS  Google Scholar 

  • Hölzl G, Dörmann P (2007) Structure and function of glycoglycerolipids in plants and bacteria. Prog Lipid Res 46:225–243

    Article  Google Scholar 

  • Jackson M, Crick DC, Brennan PJ (2000) Phosphatidylinositol is an essential phospholipid in mycobacteria. J Biol Chem 275:30092–30099

    Article  CAS  Google Scholar 

  • Jorasch P, Wolter FP, Zähringer U, Heinz E (1998) A UDP glucosyltransferase from Bacillus subtilis successively transfers up to four glucose residues to 1,2-diacylglycerol: expression of ypfP in Escherichia coli and structural analysis of its reaction products. Mol Microbiol 29:419–430

    Article  CAS  Google Scholar 

  • Jorge CD, Borges N, Santos H (2015) A novel pathway for the synthesis of inositol phospholipids uses cytidine diphosphate (CDP)-inositol as donor of the polar head group. Environ Microbiol 17:2492–2504

    Article  CAS  Google Scholar 

  • Kanfer J, Kennedy EP (1964) Metabolism and function of bacterial lipids II. Biosynthesis of phospholipids in Escherichia coli. J Biol Chem 239:1720–1726

    CAS  PubMed  Google Scholar 

  • Kent C, Gee P, Lee SY, Bian X, Fenno JC (2004) A CDP-choline pathway for phosphatidylcholine biosynthesis in Treponema denticola. Mol Microbiol 51:471–481

    Article  CAS  Google Scholar 

  • Klement MLR, Öjemyr L, Tagscherer KE, Widmalm G, Wieslander Å (2007) A processive lipid glycosyltransferase in the small human pathogen Mycoplasma pneumoniae: involvement in host immune response. Mol Microbiol 65:1444–1457

    Article  CAS  Google Scholar 

  • Krol E, Becker A (2004) Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. Mol Genet Genomics 272:1–17

    Article  CAS  Google Scholar 

  • Lopez D (2015) Molecular composition of functional microdomains in bacterial membranes. Chem Phys Lipids 192:3–11

    Article  CAS  Google Scholar 

  • López-Lara IM, Geiger O (2017) Bacterial lipid diversity. Biochim Biophys Acta 1862:1287–1299

    Article  Google Scholar 

  • López-Lara IM, Sohlenkamp C, Geiger O (2003) Membrane lipids in plant-associated bacteria: their biosyntheses and possible functions. Mol Plant-Microbe Interact 16:567–579

    Article  Google Scholar 

  • Lorenzen W, Ahrendt T, Bozhuyuk KAJ, Bode HB (2014) A multifunctional enzyme is involved in bacterial ether lipid biosynthesis. Nature Chem Biol 10:425–427

    Article  CAS  Google Scholar 

  • Lu Y-J, ZhangY-M GKD, Qi J, Lee RE, Rock CO (2006) Acyl-phosphates initiate membrane phospholipid synthesis in Gram-positive pathogens. Mol Cell 23:765–772

    Article  CAS  Google Scholar 

  • Lu YH, Guan Z, Zhao J, Raetz CR (2011) Three phosphatidylglycerol-phosphate phosphatases in the inner membrane of Escherichia coli. J Biol Chem 286:5506–5518

    Article  CAS  Google Scholar 

  • Matsumoto K, Kusaka J, Nishibori A, Hara H (2006) Lipid domains in bacterial membranes. Mol Microbiol 61:1110–1117

    Article  CAS  Google Scholar 

  • Morii H, Ogawa M, Fukuda K, Taniguchi H, Koga Y (2010) A revised biosynthetic pathway for phosphatidylinositol in Mycobacteria. J Biochem 148:593–602

    Article  CAS  Google Scholar 

  • Moser R, Aktas M, Narberhaus F (2014a) Phosphatidylcholine biosynthesis in Xanthomonas campestris via a yeast-like acylation pathway. Mol Microbiol 91:736–750

    Article  CAS  Google Scholar 

  • Moser R, Aktas M, Fritz C, Narberhaus F (2014b) Discovery of a bifunctional cardiolipin/phosphatidylethanolamine synthase in bacteria. Mol Microbiol 92:959–972

    Article  CAS  Google Scholar 

  • Nelson DL, Cox MM (2017) Lehninger - Principles of Biochemistry, 7th edn. WH Freeman and Company, New York

    Google Scholar 

  • Nishijima S, Asami Y, Uetake N, Yamagoe S, Ohta A, Shibuya I (1988) Disruption of the Escherichia coli cls gene responsible for cardiolipin synthesis. J Bacteriol 170:775–780

    Article  CAS  Google Scholar 

  • Raetz CRH (1986) Molecular genetics of membrane phospholipids synthesis. Annu Rev Genet 20:253–295

    Article  CAS  Google Scholar 

  • Raetz CRH, Newman KF (1978) Neutral lipid accumulation in the membranes of Escherichia coli mutants lacking diglyceride kinase. J Biol Chem 253:3882–3887

    CAS  PubMed  Google Scholar 

  • Raetz CR, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification systems in Gram-negative bacteria. Annu Rev Biochem 76:295–329

    Article  CAS  Google Scholar 

  • Riekhof WR, Andre C, Benning C (2005) Two enzymes, BtaA and BtaB, are sufficient for betaine lipid biosynthesis in bacteria. Arch Biochem Biophys 441:96–105

    Article  CAS  Google Scholar 

  • Rock CO (2008) Fatty acids and phospholipids metabolism in prokaryotes. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes, 5th edn. Elsevier, Amsterdam, pp 59–96

    Chapter  Google Scholar 

  • Romantsov T, Culham DE, Caplan T, Garner J, Hodges RS, Wood JM (2017) ProP-ProP and ProP-phospholipid interactions determine the subcellular distribution of osmosensing transporter ProP in Escherichia coli. Mol Microbiol 103:469–482

    Article  CAS  Google Scholar 

  • Sahonero-Canavesi DX, López-Lara IM, Geiger O (2017) Membrane lipid degradation and lipid cycles in microbes. In: Rojo F (ed) Aerobic utilization of hydrocarbons, oils and lipids, Handbook of hydrocarbon and lipid microbiology, Springer International Publishing AG. https://doi.org/10.1007/978-3-319-39782-5_38-1

    Google Scholar 

  • Sandoval-Calderón M, Geiger O, Guan Z, Barona-Gómez F, Sohlenkamp C (2009) A eukaryote-like cardiolipin synthase is present in Streptomyces coelicolor and in most actinobacteria. J Biol Chem 284:17383–17390

    Article  Google Scholar 

  • Shimojima M (2011) Biosynthesis and functions of the plant sulfolipid. Prog Lipid Res 50:234–239

    Article  CAS  Google Scholar 

  • Slavetinsky C, Kuhn S, Peschel A (2017) Bacterial aminoacyl phospholipids – biosynthesis and role in basic cellular processes and pathogenicity. Biochim Biophys Acta 1862:1310–1318

    Article  CAS  Google Scholar 

  • Smith AM, Harrison JS, Grube CD, Sheppe AEF, Sahara N, Ishii R, Nureki O, Roy H (2015) tRNA-dependent alanylation of diacylglycerol and phosphatidylglycerol in Corynebacterium glutamicum. Mol Microbiol 98:681–693

    Article  CAS  Google Scholar 

  • Sohlenkamp C, Geiger O (2016) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40:133–159

    Article  CAS  Google Scholar 

  • Sohlenkamp C, López-Lara IM, Geiger O (2003) Biosynthesis of phosphatidylcholine in bacteria. Prog Lipid Res 42:115–162

    Article  CAS  Google Scholar 

  • Sohlenkamp C, de Rudder KE, Geiger O (2004) Phosphatidylethanolamine is not essential for growth of Sinorhizobium meliloti on complex culture media. J Bacteriol 186:1667–1677

    Article  CAS  Google Scholar 

  • Sohlenkamp C, Galindo-Lagunas KA, Guan Z, Vinuesa P, Robinson S, Thomas Oates J, Raetz CRH, Geiger O (2007) The lipid lysyl-phosphatidylglycerol is present in membranes of Rhizobium tropici CIAT899 and confers increased resistance to polymyxin B under acidic growth conditions. Mol Plant-Microbe Interact 20:1421–1430

    Article  CAS  Google Scholar 

  • Sugimoto K, Sato N, Tsuzuki M (2007) Utilization of a chloroplast membrane sulfolipid as a major internal sulfur source for protein synthesis in the early phase of sulfur starvation in Chlamydomonas reinhardtii. FEBS Lett 581:4519–4522

    Article  CAS  Google Scholar 

  • Tan BK, Bogdanov M, Zhao J, Dowhan W, Raetz CR, Guan Z (2012) Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates. Proc Natl Acad Sci USA 109:16504–16509

    Article  CAS  Google Scholar 

  • Vences-Guzmán MA, Goetting-Minesky MP, Guan Z, Castillo-Ramírez S, Córdoba-Castro LA, López-Lara IM, Geiger O, Sohlenkamp C, Fenno JC (2017) 1,2-Diacylglycerol choline phosphotransferase catalyzes the final step in the unique Treponema denticola phosphatidylcholine biosynthesis pathway. Mol Microbiol 103:896–912

    Article  Google Scholar 

  • Vinuesa P, Neumann-Silkow F, Pacios-Bras C, Spaink HP, Martínez-Romero E, Werner D (2003) Genetic analysis of a pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness. Mol Plant-Microbe Interact 16:159–168

    Article  CAS  Google Scholar 

  • Yao Y, Rock CO (2013) Phosphatidic acid synthesis in bacteria. Biochim Biophys Acta 1831:495–502

    Article  CAS  Google Scholar 

  • Zavaleta-Pastor M, Sohlenkamp C, Gao JL, Guan Z, Zaheer R, Finan TM, Raetz CRH, López-Lara IM, Geiger O (2010) Sinorhizobium meliloti phospholipase C required for lipid remodeling during phosphorus limitation. Proc Natl Acad Sci USA 107:302–307

    Article  CAS  Google Scholar 

  • Zhang YM, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nature Rev Microbiol 6:222–233

    Article  Google Scholar 

Download references

Acknowledgments

Research in our lab was supported by grants from Consejo Nacional de Ciencia y Tecnología-México (CONACyT-Mexico) (178359 and 253549 in Investigación Científica Básica as well as 118 in Investigación en Fronteras de la Ciencia) and from Dirección General de Asuntos del Personal Académico-Universidad Nacional Autónoma de México (DGAPA-UNAM; PAPIIT IN202616, IN203612). We thank Angeles Moreno and Lourdes Martínez-Aguilar for their skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto Geiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Geiger, O., Sohlenkamp, C., López-Lara, I.M. (2019). Formation of Bacterial Glycerol-Based Membrane Lipids: Pathways, Enzymes, and Reactions. In: Geiger, O. (eds) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50430-8_8

Download citation

Publish with us

Policies and ethics