Skip to main content

The Co-design of Astrophysical Code for Massively Parallel Supercomputers

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2016)

Abstract

The rapid growth of supercomputer technologies became a driver for the development of natural sciences. Most of the discoveries in astronomy, in physics of elementary particles, in the design of new materials in the DNA research are connected with numerical simulation and with supercomputers. Supercomputer simulation became an important tool for the processing of the great volume of the observation and experimental data accumulated by the mankind. Modern scientific challenges put the actuality of the works in computer systems and in the scientific software design to the highest level. The architecture of the future exascale systems is still being discussed. Nevertheless, it is necessary to develop the algorithms and software for such systems right now. It is necessary to develop software that is capable of using tens and hundreds of thousands of processors and of transmitting and storing of large volumes of data. In the present work the technology for the development of such algorithms and software is proposed. As an example of the use of the technology, the process of the software development is considered for some problems of astrophysics.

This work was partially supported by RFBR grants 15-31-20150, 15-01-00508, 16-01-00564, 14-01-00392, 16-07-00534, 16-29-15120 and by Grant of the President of Russian Federation for the support of young scientists number MK 6648.2015.9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reed, D.A., Dongarra, J.: Exascale computing and big data. Comm. ACM 58(7), 56–68 (2015)

    Article  Google Scholar 

  2. Dongarra, J.J., et al.: The international exascale software project roadmap. Int. J. High Perf. Comp. App. 25(1), 3–60 (2011)

    Article  Google Scholar 

  3. Keyes, D.E.: Exaflop/s: the why and the how. C.R. Mechanique 339, 70–77 (2011)

    Google Scholar 

  4. Hsu, C-H., Kremer, U.: The design, implementation, and evaluation of a compiler algorithm for CPU energy reduction. In: Programming Languages, Design, and Implementation (2003)

    Google Scholar 

  5. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view of the parallel computing landscape. Comm. ACM 52, 56–67 (2009)

    Article  Google Scholar 

  6. Sterling, T.: Achieving scalability in the presence of asynchrony for exascale computing. Adv. Parall. Comp. 24, 104–117 (2013)

    Google Scholar 

  7. Gao, G., Sterling, T., Stevens R., Hereld, M., Zhuparallex, W.: A study of a new parallel computation model. In: Proceedings of IEEE International Parallel and Distributed Processing Symposium, pp. 1–6 (2007)

    Google Scholar 

  8. Tabbal, A., Anderson, M., Brodowicz, M., Kaiser, H., Sterling, T.: Preliminary design examination of the parallex system from a software and hardware perspective. Sigmetrics Perform. Eval. Rev. 38(4), 81–87 (2011)

    Article  Google Scholar 

  9. Shamoto, H., Shirahata, K., Drozd, A., Sato, H., Matsuoka, S.: Large-scale distributed sorting for GPU-based heterogeneous supercomputers. In: Proceedings 2014 IEEE International Conference on Big Data, IEEE Big Data 2014, pp. 510–518 (2014)

    Google Scholar 

  10. Springer, R., Lowenthal, D.K., Rountree, B., Freeh, V.W.: Minimizing execution time in MPI programs on an energy-constrained, power scalable cluster. In: Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 230–238 (2006)

    Google Scholar 

  11. Freeh, V.W., Pan, F., Lowenthal, D.K., Kappiah, N., Springer, R., Rountree, B., Femal, M.E.: Analyzing the energy-time tradeoff in high-performance computing applications. IEEE Trans. Parall. Distr. Sys. 18(6), 835–848 (2007)

    Article  Google Scholar 

  12. NVIDIA profiler. http://docs.nvidia.com/cuda/profiler-users-guide/

  13. Intel micsmc utility. https://software.intel.com/en-us/articles/measuring-power-on-intel-xeon-phi-product-family-devices

  14. Nikolskiy, V., Stegailov, V.: Floating-point performance of ARM cores and their efficiency in classical molecular dynamics. J. Phys.: Conf. Ser. 681, Conf. 1, 1–7 (2015)

    Google Scholar 

  15. Keller, V., Gruber, R.: One joule per GFlop for BLAS2 now!. In: AIP Conference Proceedings, vol. 1281, pp. 1321–1324 (2010)

    Google Scholar 

  16. Podkorytov, D., Rodionov, A., Sokolova, O., Yurgenson, A.: Using agent-oriented simulation system agnes for evaluation of sensor networks. In: Vinel, A., Bellalta, B., Sacchi, C., Lyakhov, A., Telek, M., Oliver, M. (eds.) MACOM 2010. LNCS, vol. 6235, pp. 247–250. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15428-7_24

    Chapter  Google Scholar 

  17. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE. Wiley, Chichester (2007)

    Book  Google Scholar 

  18. Glinsky, B., Rodionov, A., Marchenko, M., Podkorytov, D., Weins, D.: Scaling the distributed stochastic simulation to exaflop supercomputers. In: Proceedings of IEEE High Performance Computing and Communication and 2012 IEEE 9th International Conference on Embedded Software and Systems, pp. 1131–1136 (2012)

    Google Scholar 

  19. Chavarría-Miranda, D., Manzano, J., Krishnamoorthy, S., Vishnu, A., Barker, K., Hoisie, A.: SCaLeM: a framework for characterizing and analyzing execution models. In: Proceedings of 20 Years of Beowulf Workshop, ACM International Conference Proceeding Series, pp. 34–43 (2015)

    Google Scholar 

  20. Kulkarni, A., Lang, M., Lumsdaine, A.: GoDEL: A multidirectional dataflow execution model for large-scale computing. In: Proceedings of the First Workshop on Data-Flow Execution Models for Extreme Scale Computing, pp. 10–18 (2011)

    Google Scholar 

  21. Kulikov, I.: GPUPEGAS: a new GPU-accelerated hydrodynamic code for numerical simulations of interacting galaxies. Astrophys. J. Suppl. Ser. 214(12), 1–12 (2014)

    Google Scholar 

  22. Kulikov, I.M., Chernykh, I.G., Snytnikov, A.V., Glinskiy, B.M., Tutukov, A.V.: AstroPhi: a code for complex simulation of dynamics of astrophysical objects using hybrid supercomputers. Comp. Phys. Comm. 186, 71–80 (2015)

    Article  Google Scholar 

  23. Godunov, S.K., Kulikov, I.M.: Computation of discontinuous solutions of fluid dynamics equations with entropy nondecrease guarantee. Comput. Math. Math. Phys. 54, 1012–1024 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kulikov, I., Vorobyov, E.: Using the PPML approach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows. J. Comput. Phys. 317, 316–346 (2016)

    Article  MathSciNet  Google Scholar 

  25. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)

    Article  MATH  Google Scholar 

  26. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989)

    Article  MATH  Google Scholar 

  27. Pennycook, S.J., Hughes, C. J., Smelyanskiy, M., Jarvis, S.A.: Exploring SIMD for molecular dynamics, using intel xeon processors and intel xeon phi coprocessors. In: 2013 IEEE 27th International Symposium on Parallel and Distributed Processing (IPDPS) 2013, pp. 1085–1097. IEEE (2013)

    Google Scholar 

  28. Kim, S., Han, H.: Efficient SIMD code generation for irregular kernels. In: Proceedings of the Symposium on Principles and Practice of Parallel Programming, New Orleans, LA, 25–29 February 2012, pp. 55–64 (2012)

    Google Scholar 

  29. Intel® Architecture Instruction Set Extensions Programming Reference. https://software.intel.com/sites/default/files/m/9/2/3/41604

  30. RSC PetaStream – 1PFLOPS per cabinet massively parallel supercomputer. http://www.rscgroup.ru/sites/default/files/rsc_petastream_en_print.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Chernykh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Glinsky, B. et al. (2016). The Co-design of Astrophysical Code for Massively Parallel Supercomputers. In: Carretero, J., et al. Algorithms and Architectures for Parallel Processing. ICA3PP 2016. Lecture Notes in Computer Science(), vol 10049. Springer, Cham. https://doi.org/10.1007/978-3-319-49956-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49956-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49955-0

  • Online ISBN: 978-3-319-49956-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics