Skip to main content

Assessment of Population Iodine Status

  • Chapter
  • First Online:
Iodine Deficiency Disorders and Their Elimination

Abstract

Iodine deficiency is one of the most common micronutrient deficiencies, affecting 30 % of the world’s population. Iodine status in a population is usually assessed by urinary iodine concentration (UIC) in spot urine samples; UIC is associated with large inter- and intra-individual variation. Other biomarkers including thyroid-stimulating hormone (TSH), triiodothyronine (T3) and thyroxine (T4) can be used to assess iodine status, however, the normal reference ranges are wide, making it difficult to use these to detect mild iodine deficiency. Another thyroid-specific protein, thyroglobulin (Tg), is considered to be more sensitive to improvements of iodine status in mildly iodine deficient populations but validated cut-offs for adults are lacking. Dietary assessment methods often underestimate iodine intake because of the difficulty in accurately quantifying the contribution of iodized salt to total iodine intake. Future research should focus on the development and validation of more accurate and reliable biomarkers, particularly for individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO/UNICEF/ICCIDD. Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers. 3rd ed. Geneva: WHO; 2007.

    Google Scholar 

  2. Zimmermann MB, Jooste PL, Pandav CS. Iodine-deficiency disorders. Lancet. 2008;372(9645):1251–62. doi:10.1016/S0140-6736(08)61005-3.

    Article  CAS  PubMed  Google Scholar 

  3. Nath SK, Moinier B, Thuillier F, Rongier M, Desjeux JF. Urinary excretion of iodide and fluoride from supplemented food grade salt. Int J Vitam Nutr Res. 1992;62(1):66–72.

    CAS  PubMed  Google Scholar 

  4. Soldin OP. Controversies in urinary iodine determinations. Clin Biochem. 2002;35(8):575–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vejbjerg P, Knudsen N, Perrild H, Laurberg P, Andersen S, Rasmussen LB, et al. Estimation of iodine intake from various urinary iodine measurements in population studies. Thyroid. 2009;19(11):1281–6. doi:10.1089/thy.2009.0094.

    Article  CAS  PubMed  Google Scholar 

  6. König F, Andersson M, Hotz K, Aeberli I, Zimmermann MB. Ten repeat collections for urinary iodine from spot samples or 24-hour samples are needed to reliably estimate individual iodine status in women. J Nutr. 2011;141(11):2049–54.

    Article  PubMed  Google Scholar 

  7. Johner SA, Shi L, Remer T. Higher urine volume results in additional renal iodine loss. Thyroid. 2010;20(12):1391–7. doi:10.1089/thy.2010.0161.

    Article  CAS  PubMed  Google Scholar 

  8. Rasmussen LB, Ovesen L, Christiansen E. Day-to-day and within-day variation in urinary iodine excretion. Eur J Clin Nutr. 1999;53(5):401–7.

    Article  CAS  PubMed  Google Scholar 

  9. Ji C, Lu T, Dary O, Legetic B, Campbell NR, Cappuccio FP. Systematic review of studies evaluating urinary iodine concentration as a predictor of 24-hour urinary iodine excretion for estimating population iodine intake. Rev Panam Salud Publica. 2015;38(1):73–81.

    PubMed  Google Scholar 

  10. John KA, Cogswell ME, Campbell NR, Nowson CA, Legetic B, Hennis AJ, et al. Accuracy and usefulness of select methods for assessing complete collection of 24-hour urine: a systematic review. J Clin Hypertens (Greenwich). 2016;18:456–67. doi:10.1111/jch.12763.

    Article  CAS  Google Scholar 

  11. Rasmussen LB, Ovesen L, Bülow I, Jørgensen T, Knudsen N, Laurberg P, et al. Dietary iodine intake and urinary iodine excretion in a Danish population: effect of geography, supplements and food choice. Br J Nutr. 2002;87(1):61–9.

    Article  CAS  PubMed  Google Scholar 

  12. Dorey CM, Zimmermann MB. Reference values for spot urinary iodine concentrations in iodine-sufficient newborns using a new pad collection method. Thyroid. 2008;18(3):347–52. doi:10.1089/thy.2007.0279.

    Article  CAS  PubMed  Google Scholar 

  13. Zimmermann MB, Andersson M. Assessment of iodine nutrition in populations: past, present, and future. Nutr Rev. 2012;70(10):553–70.

    Article  PubMed  Google Scholar 

  14. Edmonds JC, McLean RM, Williams SM, Skeaff SA. Urinary iodine concentration of New Zealand adults improves with mandatory fortification of bread with iodised salt but not to predicted levels. Eur J Nutr. 2015;55(3):1201–12. doi:10.1007/s00394-015-0933-y.

    Article  PubMed  Google Scholar 

  15. Zimmermann MB, Hussein I, Al Ghannami S, El Badawi S, Al Hamad NM, Abbas Hajj B, et al. Estimation of the prevalence of inadequate and excessive iodine intakes in school-age children from the adjusted distribution of urinary iodine concentrations from population surveys. J Nutr. 2016; doi:10.3945/jn.115.229005.

    Google Scholar 

  16. Andersen S, Pedersen KM, Pedersen IB, Laurberg P. Variations in urinary iodine excretion and thyroid function. A 1-year study in healthy men. Eur J Endocrinol. 2001;144(5):461–5.

    Article  CAS  PubMed  Google Scholar 

  17. Busnardo B, Nacamulli D, Zambonin L, Mian C, Piccolo M, Girelli ME. Restricted intraindividual urinary iodine concentration variability in nonfasting subjects. Eur J Clin Nutr. 2006;60(3):421–5.

    Article  CAS  PubMed  Google Scholar 

  18. Andersen S, Karmisholt J, Pedersen KM, Laurberg P. Reliability of studies of iodine intake and recommendations for number of samples in groups and in individuals. Br J Nutr. 2008;99(4):813–8.

    Article  CAS  PubMed  Google Scholar 

  19. Karmisholt J, Laurberg P, Andersen S. Recommended number of participants in iodine nutrition studies is similar before and after an iodine fortification programme. Eur J Nutr. 2014;53(2):487–92. doi:10.1007/s00394-013-0551-5.

    Article  CAS  PubMed  Google Scholar 

  20. Johner SA, Thamm M, Schmitz R, Remer T. Examination of iodine status in the German population: an example for methodological pitfalls of the current approach of iodine status assessment. Eur J Nutr. 2016;55(3):1275–82. doi:10.1007/s00394-015-0941-y.

    Article  CAS  PubMed  Google Scholar 

  21. Knudsen N, Christiansen E, Brandt-Christensen M, Nygaard B, Perrild H. Age- and sex-adjusted iodine/creatinine ratio. A new standard in epidemiological surveys? Evaluation of three different estimates of iodine excretion based on casual urine samples and comparison to 24 h values. Eur J Clin Nutr. 2000;54(4):361–3.

    Article  CAS  PubMed  Google Scholar 

  22. Andersen S, Hvingel B, Kleinschmidt K, Jorgensen T, Laurberg P. Changes in iodine excretion in 50-69-y-old denizens of an Arctic society in transition and iodine excretion as a biomarker of the frequency of consumption of traditional Inuit foods. Am J Clin Nutr. 2005;81(3):656–63.

    CAS  PubMed  Google Scholar 

  23. Furnee CA, van der Haar F, West CE, Hautvast JG. A critical appraisal of goiter assessment and the ratio of urinary iodine to creatinine for evaluating iodine status. Am J Clin Nutr. 1994;59(6):1415–7.

    CAS  PubMed  Google Scholar 

  24. Thomson CD, Woodruffe S, Colls AJ, Joseph J, Doyle TC. Urinary iodine and thyroid status of New Zealand residents. Eur J Clin Nutr. 2001;55(5):387–92.

    Article  CAS  PubMed  Google Scholar 

  25. Thomson CD, Smith TE, Butler KA, Packer MA. An evaluation of urinary measures of iodine and selenium status. J Trace Elem Med Biol. 1996;10(4):214–22.

    Article  CAS  PubMed  Google Scholar 

  26. Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect. 2005;113(2):192–200.

    Article  CAS  PubMed  Google Scholar 

  27. Magner JA. Thyroid-stimulating hormone: biosynthesis, cell biology, and bioactivity. Endocr Rev. 1990;11(2):354–85. doi:10.1210/edrv-11-2-354.

    Article  CAS  PubMed  Google Scholar 

  28. Vadiveloo T, Donnan PT, Murphy MJ, Leese GP. Age- and gender-specific TSH reference intervals in people with no obvious thyroid disease in Tayside, Scotland: the Thyroid Epidemiology, Audit, and Research Study (TEARS). J Clin Endocrinol Metab. 2013;98(3):1147–53. doi:10.1210/jc.2012-3191.

    Article  CAS  PubMed  Google Scholar 

  29. Triggiani V, Tafaro E, Giagulli VA, Sabba C, Resta F, Licchelli B, et al. Role of iodine, selenium and other micronutrients in thyroid function and disorders. Endocr Metab Immune Disord Drug Targets. 2009;9(3):277–94.

    Article  CAS  PubMed  Google Scholar 

  30. Obregón MJ, del Rey FE, de Escobar GM. The effects of iodine deficiency on thyroid hormone deiodination. Thyroid. 2005;15(8):917–29. doi:10.1089/thy.2005.15.917.

    Article  PubMed  Google Scholar 

  31. Ristić-Medić D, Piskackova Z, Hooper L, Ruprich J, Casgrain A, Ashton K, et al. Methods of assessment of iodine status in humans: a systematic review. Am J Clin Nutr. 2009;89(6):2052S–69S.

    Article  PubMed  Google Scholar 

  32. Zimmermann MB. Iodine deficiency. Endocr Rev. 2009;30(4):376–408.

    Article  CAS  PubMed  Google Scholar 

  33. Vandevijvere S, Coucke W, Vanderpas J, Trumpff C, Fauvart M, Meulemans A, et al. Neonatal thyroid-stimulating hormone concentrations in Belgium: a useful indicator for detecting mild iodine deficiency? PLoS One. 2012;7(10):e47770. doi:10.1371/journal.pone.0047770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Travers CA, Guttikonda K, Norton CA, Lewis PR, Mollart LJ, Wiley V, et al. Iodine status in pregnant women and their newborns: are our babies at risk of iodine deficiency? Med J Aust. 2006;184(12):617–20.

    PubMed  Google Scholar 

  35. Burns R, Mayne PD, O’Herlihy C, Smith DF, Higgins M, Staines A, et al. Can neonatal TSH screening reflect trends in population iodine intake? Thyroid. 2008;18(8):883. doi:10.1089/thy.2008.0036.

    Article  CAS  PubMed  Google Scholar 

  36. Lazarus J, Brown RS, Daumerie C, Hubalewska-Dydejczyk A, Negro R, Vaidya B. 2014 European Thyroid Association guidelines for the management of subclinical hypothyroidism in pregnancy and in children. Eur Thyroid J. 2014;3(2):76–94. doi:10.1159/000362597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Skeaff SA. Assessing iodine intakes in pregnancy and strategies for improvement. J Trace Elem Med Biol. 2012;26(2–3):141–4.

    Article  CAS  PubMed  Google Scholar 

  38. Zimmermann MB, Boelaert K. Iodine deficiency and thyroid disorders. Lancet Diabetes Endocrinol. 2015;3(4):286–95. doi:10.1016/S2213-8587(14)70225-6.

    Article  CAS  PubMed  Google Scholar 

  39. Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev. 2008;29(7):898–938. doi:10.1210/er.2008-0019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pathak S, Meenakshi, Agarwal D, Nayak M. Serum cortisol and thyroid hormones in critically ill infants. Int J Health Sci Res 2016;6(1):73-77.

    Google Scholar 

  41. Mortoglou A, Candiloros H. The serum triiodothyronine to thyroxine (T3/T4) ratio in various thyroid disorders and after levothyroxine replacement therapy. Hormones (Athens). 2004;3(2):120–6.

    Article  CAS  Google Scholar 

  42. Kopp P. Thyroid hormone synthesis. In: Braverman LE, Cooper DS, editors. Werner & Ingbar’s the thyroid: a fundamental and clinical text. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2013. p. 48.

    Google Scholar 

  43. Lum SM, Nicoloff JT, Spencer CA, Kaptein EM. Peripheral tissue mechanism for maintenance of serum triiodothyronine values in a thyroxine-deficient state in man. J Clin Invest. 1984;73(2):570–5. doi:10.1172/jci111245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Winter WE, Schatz D, Bertholf RL. The thyroid: pathophysiology and thryoid function testing. In: Burtism CA, Ashwood ER, Bruns DE, editors. Tietz textbook of clinical chemistry and molecular diagnostics. 5th ed. St. Louis: Saunders, Elsevier Inc.; 2012. p. 1912.

    Google Scholar 

  45. Zimmermann M. Methods to assess iron and iodine status. Br J Nutr. 2008;99(Suppl 3):S2–9.

    CAS  PubMed  Google Scholar 

  46. Rohner F, Zimmermann M, Jooste P, Pandav C, Caldwell K, Raghavan R, et al. Biomarkers of nutrition for development- iodine review. J Nutr. 2014;144(8):1322s-1342s. doi:10.3945/jn.113.181974.

  47. Di Jeso B, Arvan P. Thyroglobulin from molecular and cellular biology to clinical endocrinology. Endocr Rev. 2016;37(1):2–36. doi:10.1210/er.2015-1090.

    Article  PubMed  Google Scholar 

  48. Zimmermann MB, Aeberli I, Andersson M, Assey V, Yorg JA, Jooste P, et al. Thyroglobulin is a sensitive measure of both deficient and excess iodine intakes in children and indicates no adverse effects on thyroid function in the UIC range of 100–299 μg/L: a UNICEF/ICCIDD study group report. J Clin Endocrinol Metab. 2013;98(3):1271–80.

    Article  CAS  PubMed  Google Scholar 

  49. Jukić T, Zimmermann MB, Granić R, Prpić M, Krilić D, Jureša V, et al. Sufficient iodine intake in schoolchildren from the Zagreb area: assessment with dried blod spot thyroglobulin as a new functional biomarker for iodine deficiency. Acta Clin Croat. 2015;54(4):424–31.

    PubMed  Google Scholar 

  50. Ma ZF, Venn BJ, Manning PJ, Cameron CM, Skeaff SA. Iodine supplementation of mildly iodine-deficient adults lowers thyroglobulin: a randomized controlled trial. J Clin Endocrinol Metab. 2016;101(4):1737–44. doi:10.1210/jc.2015-3591.

    Article  PubMed  Google Scholar 

  51. Ma ZF, Skeaff SA. Thyroglobulin as a biomarker of iodine deficiency: a review. Thyroid. 2014;24(8):1195–209. doi:10.1089/thy.2014.0052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Spencer CA, Wang CC. Thyroglobulin measurement: techniques, clinical benefits, and pitfalls. Endocrinol Metab Clin North Am. 1995;24(4):841–63.

    CAS  PubMed  Google Scholar 

  53. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, et al. Serum TSH, T4, and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87(2):489–99.

    Article  CAS  PubMed  Google Scholar 

  54. Pezzino V, Vigneri R, Squatrito S, Filetti S, Camus M, Polosa P. Increased serum thyroglobulin levels in patients with nontoxic goiter. J Clin Endocrinol Metab. 1978;46(4):653–7.

    Article  CAS  PubMed  Google Scholar 

  55. Krejbjerg A, Bjergved L, Pedersen IB, Carlé A, Jorgensen T, Perrild H, et al. Iodine fortification may influence the age-related change in thyroid volume: a longitudinal population-based study (DanThyr). Eur J Endocrinol. 2014;170(4):507–17. doi:10.1530/eje-13-0918.

    Article  CAS  PubMed  Google Scholar 

  56. Zimmermann MB, Hess SY, Molinari L, De Benoist B, Delange F, Braverman LE, et al. New reference values for thyroid volume by ultrasound in iodine-sufficient schoolchildren: a World Health Organization/Nutrition for Health and Development Iodine Deficiency Study Group Report. Am J Clin Nutr. 2004;79(2):231–7.

    CAS  PubMed  Google Scholar 

  57. Jooste PL, Weight MJ, Lombard CJ. Short-term effectiveness of mandatory iodization of table salt, at an elevated iodine concentration, on the iodine and goiter status of schoolchildren with endemic goiter. Am J Clin Nutr. 2000;71(1):75–80.

    CAS  PubMed  Google Scholar 

  58. Vejbjerg P, Knudsen N, Perrild H, Carle A, Laurberg P, Pedersen IB, et al. Effect of a mandatory iodization program on thyroid gland volume based on individuals’ age, gender, and preceding severity of dietary iodine deficiency: a prospective, population-based study. J Clin Endocrinol Metab. 2007;92(4):1397–401. doi:10.1210/jc.2006-2580.

    Article  CAS  PubMed  Google Scholar 

  59. FSANZ. Final assessment report- proposal P230: consideration of mandatory fortication with iodine for New Zealand. FSANZ: Wellington; 2008.

    Google Scholar 

  60. Aburto N, Abudou M, Candeias V, Wu T. Effect and safety of salt iodization to prevent iodine deficiency disorders: a systematic review with meta-analyses. WHO eLibrary of Evidence for Nutrition Actions (eLENA). Geneva: WHO; 2014.

    Google Scholar 

  61. Goindi G, Karmarkar MG, Kapil U, Jagannathan J. Estimation of losses of iodine during different cooking procedures. Asia Pac J Clin Nutr. 1995;4(2):225–7.

    CAS  PubMed  Google Scholar 

  62. Wang GY, Zhou RH, Wang Z, Shi L, Sun M. Effects of storage and cooking on the iodine content in iodized salt and study on monitoring iodine content in iodized salt. Biomed Environ Sci. 1999;12(1):1–9.

    PubMed  Google Scholar 

  63. Rana R, Raghuvanshi RS. Effect of different cooking methods on iodine losses. J Food Sci Technol. 2013;50(6):1212–6. doi:10.1007/s13197-011-0436-7.

    Article  CAS  PubMed  Google Scholar 

  64. Winger RJ, König J, House DA. Technological issues associated with iodine fortification of foods. Trends Food Sci Tech. 2008;19(2):94–101. doi:10.1016/j.tifs.2007.08.002.

    Article  CAS  Google Scholar 

  65. Henríquez-Sánchez P, Sánchez-Villegas A, Doreste-Alonso J, Ortiz-Andrellucchi A, Pfrimer K, Serra-Majem L. Dietary assessment methods for micronutrient intake: a systematic review on vitamins. Br J Nutr. 2009;102(Suppl 1):S10–37. doi:10.1017/s0007114509993126.

    Article  PubMed  Google Scholar 

  66. Slimani N, Ferrari P, Ocké M, Welch A, Boeing H, Liere M, et al. Standardization of the 24-hour diet recall calibration method used in the European Prospective Investigation into Cancer and Nutrition (EPIC): general concepts and preliminary results. Eur J Clin Nutr. 2000;54(12):900–17.

    Article  CAS  PubMed  Google Scholar 

  67. De Keyzer W, Huybrechts I, De Vriendt V, Vandevijvere S, Slimani N, Van Oyen H, et al. Repeated 24-hour recalls versus dietary records for estimating nutrient intakes in a national food consumption survey. Food Nutr Res. 2011;55:1118–25. doi:10.3402/fnr.v55i0.7307.

    Article  Google Scholar 

  68. Perrine CG, Herrick K, Serdula MK, Sullivan KM. Some subgroups of reproductive age women in the United States may be at risk for iodine deficiency. J Nutr. 2010;140(8):1489–94. doi:10.3945/jn.109.120147.

    Article  CAS  PubMed  Google Scholar 

  69. Raina SK. Limitations of 24-hour recall method: micronutrient intake and the presence of the metabolic syndrome. N Am J Med Sci. 2013;5(8):498. doi:10.4103/1947-2714.117329.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cade J, Burley V, Warm D, Thompson R, Margetts B. Food-frequency questionnaires: a review of their design, validation and utilisation. Nutr Res Rev. 2004;17(1):5–22.

    Article  CAS  PubMed  Google Scholar 

  71. Watson JF, Collins CE, Sibbritt DW, Dibley MJ, Garg ML. Reproducibility and comparative validity of a food frequency questionnaire for Australian children and adolescents. Int J Behav Nutr Phys Act. 2009;6:62. doi:10.1186/1479-5868-6-62.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Haftenberger M, Heuer T, Heidemann C, Kube F, Krems C, Mensink GB. Relative validation of a food frequency questionnaire for national health and nutrition monitoring. Nutr J. 2010;9:36. doi:10.1186/1475-2891-9-36.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rasmussen LB, Ovesen L, Bulow I, Jorgensen T, Knudsen N, Laurberg P, et al. Evaluation of a semi-quantitative food frequency questionnaire to estimate iodine intake. Eur J Clin Nutr. 2001;55(4):287–92. doi:10.1038/sj.ejcn.1601156.

    Article  CAS  PubMed  Google Scholar 

  74. Tan LM, Charlton KE, Tan SY, Ma G, Batterham M. Validity and reproducibility of an iodine-specific food frequency questionnaire to estimate dietary iodine intake in older Australians. Nutr Diet. 2013;70(1):71–8. doi:10.1111/j.1747-0080.2012.01626.x.

    Article  Google Scholar 

  75. Combet E, Lean ME. Validation of a short food frequency questionnaire specific for iodine in UK females of childbearing age. J Hum Nutr Diet. 2014;27(6):599–605. doi:10.1111/jhn.12219.

    Article  CAS  PubMed  Google Scholar 

  76. Bath SC, Combet E, Scully P, Zimmermann MB, Hampshire-Jones KH, Rayman MP. A multi-centre pilot study of iodine status in UK schoolchildren, aged 8–10 years. Eur J Nutr. 2015; doi:10.1007/s00394-015-1014-y.

    PubMed  PubMed Central  Google Scholar 

  77. Condo D, Makrides M, Skeaff S, Zhou SJ. Development and validation of an iodine-specific FFQ to estimate iodine intake in Australian pregnant women. Br J Nutr. 2015;113(6):944–52. doi:10.1017/s0007114515000197.

    Article  CAS  PubMed  Google Scholar 

  78. Gordon RC, Rose MC, Skeaff SA, Gray AR, Morgan KM, Ruffman T. Iodine supplementation improves cognition in mildly iodine-deficient children. Am J Clin Nutr. 2009;90(5):1264–71.

    Article  CAS  PubMed  Google Scholar 

  79. Rasmussen LB, Jørgensen T, Perrild H, Knudsen N, Krejbjerg A, Laurberg P, et al. Mandatory iodine fortification of bread and salt increases iodine excretion in adults in Denmark—a 11-year follow-up study. Clin Nutr. 2014;33(6):1033–40. doi:10.1016/j.clnu.2013.10.024.

    Article  CAS  PubMed  Google Scholar 

  80. Pearce EN, Caldwell KL. Urinary iodine, thyroid function, and thyroglobulin as biomarkers of iodine status. Am J Clin Nutr. 2016;104(Suppl 3):898S–901S. doi:10.3945/ajcn.115.110395. Epub 2016 Aug 17.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Feei Ma PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ma, Z.F., Skeaff, S.A. (2017). Assessment of Population Iodine Status. In: Pearce, E. (eds) Iodine Deficiency Disorders and Their Elimination. Springer, Cham. https://doi.org/10.1007/978-3-319-49505-7_2

Download citation

Publish with us

Policies and ethics