Skip to main content

Average Cuboid Volume as a Convergence Indicator and Selection Criterion for Multi-objective Biochemical Optimization

  • Chapter
  • First Online:
EVOLVE – A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation VII

Part of the book series: Studies in Computational Intelligence ((SCI,volume 662))

Abstract

The performance of a multi-objective evolutionary algorithm (MOEA) is evaluated with regard to the quality of the populations under two aspects: the distance of the non-dominated set of a population to the true Pareto front (\(PF_{true}\)) and the spread among these solutions. Diverse convergence indicators have been proposed in the past with different requirements: either \(PF_{true}\) or a reference set of Pareto-optimal solutions is required. Furthermore, most of the convergence indicators are restricted to a non-dominated solution set, and therefore, the quality of the entire population is only represented by the non-dominated solutions. This work presents a statistically reasonable convergence indicator that is able to reflect the quality of the entire population. The average cuboid volume (ACV) assigns desirable aspects regarding the classification of entire populations. These preferable features are demonstrated and discussed. Furthermore, ACV is used as selection criterion to determine the solutions of the succeeding generation in a proposed customized NSGA-II for biochemical optimization. Two selection strategies based on the ACV indicator are proposed and empirically compared to a Pareto rank-based selection strategy. These selection strategies depend on two parameters and the adaption of the selection pressure by a variation of these parameters is empirically investigated on a three-dimensional biochemical minimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Okabe, T., Jin, Y., Sendhoff, B.: A critical survey of performance indices for multi-objective optimisation. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 2, pp. 878885 (2003)

    Google Scholar 

  2. Grosan, C., Oltean, M., Dumitrescu, D.: Performance metrics for multiobjective optimization evolutionary algorithms. In: Proceedings of the Applied and Industrial Mathematics(2003)

    Google Scholar 

  3. Rosenthal, S., Borschbach, M.: Impact of population size and selection within a customized NSGA-II for biochemical optimization assessed on the basis of the average cuboid volume indicator. In: 6th International Conference on Bioinformatics, Computational Systems and Biotechnologies (BIOTECHNO 2014), IARIA, pp. 1–7 (2014)

    Google Scholar 

  4. Emmerich, M., Beume, N., Naujoks, B.: An EMO Algorithm Using the Hypervolume Measure as Selection Criterion. EMO 2005, LNCS 3410, 62–76 (2005)

    Google Scholar 

  5. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. Parallel Prob. Solving Nat. (PPSN VIII) 3242, 832–842 (2004)

    Google Scholar 

  6. Rosenthal, S., El-Sourani, N., Borschbach, M.: Introduction of a Mutation Specific Fast Non-dominated Sorting GA Evolved for Biochemical Optimization. SEAL 2012, LNCS 7673, 158–167 (2012)

    Google Scholar 

  7. Rosenthal, S., El-Sourani, N., Borschbach, M.: Impact of Different Recombination Methods in a Mutation-Specific MOEA for a Biochemical Application. In: Vanneschi, L., Bush, W.S., Giacobini, M. (eds.) EvoBIO 2013, LNCS 7833, 188–199 (2013)

    Google Scholar 

  8. Rosenthal, S., Borschbach, M.: A benchmark on the interaction of basic variation operators in multi-objective peptide design evaluated by a three dimensional diversity metric and a minimized hypervolume. In: Emmerich, M. et. al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation IV, pp. 139–153 (2013)

    Google Scholar 

  9. Hansen, M.P., Jaszkiewicz, A.: Evaluating the Quality of Approximations to the Non-dominated Set. Technical Report IMM-REP-1998-7, Technical University of Denmark (1998)

    Google Scholar 

  10. Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: Congress on Evolutionary Computation (CEC 2002), pp. 711–716. IEEE Press, New Jersey (2002)

    Google Scholar 

  11. Zitzler, E., Thiele L.: Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.P. (eds.), Fifth International Conference on Parallel Problem Solving form Nature (PPSN-V), pp. 292–301. Berlin, Germany (1998)

    Google Scholar 

  12. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applications. Ph.D. dissertation, Swiss Federal Institute of Technology (ETH) Zurich (1999)

    Google Scholar 

  13. Laumanns, L., Zitzler, E., Thiele, L.: A unified model for multi-objective evolutionary algorithms with elitism. In: CEC 2000, vol. 1, pp. 46–52 (2000)

    Google Scholar 

  14. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evolut. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

  15. Beume, N., Rudolph, G.: Faster S-metric calculation by considering dominated hypervolume as klees measure problem. Evol. Comput. 17(4), 477–492 (2009)

    Article  Google Scholar 

  16. Beume N., Rudolph, G.: Faster S-metric calculation by considering dominated hypervolume as Klee’s measure problem. In: Proceedings of the Second IASTED Conference on Computational Intelligence, pp. 231–236 (2006)

    Google Scholar 

  17. Bradstreet, L., While, L., Barone, L.: A fast incremental hypervolume algorithm. IEEE Trans. Evolut. Comput. 12(6), 714–723 (2008)

    Article  Google Scholar 

  18. While, L., Bradstreet, L., Barone, L.A.: Fast way of calculating exact hypervolume. IEEE Trans. Evolut. Comput. 10, 29–38 (2006)

    Google Scholar 

  19. Van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: classification, analyses and new innovations. Ph.D. dissertation, Air Force Institute of Technology, Dayton, Ohio (1999)

    Google Scholar 

  20. Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithm test. In: Carroll, J., Haddad, H., Oppenheim, D., Bryant, B., Lamont, G.B. (eds.) Proceedings of the 1999 ACM Symposium on Applied Computing, pp. 351–357. San Antonio, Texas (1999)

    Google Scholar 

  21. Deb, K., Jain, S.: Running Performance Metrics for Evolutionary Multiobjective Optimization. Kan GAL Report No. 2002004, Kanpur Genetic Algorithms Laboratory, Indian Institute of Technology Kanpur (2002)

    Google Scholar 

  22. Schütze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans. Evolut. Comput. 16(4), 504–522 (2012)

    Google Scholar 

  23. Coello Coello, C.A., Cruz Cortis, N.: Solving multiobjective optimization problems using an aritifical immune system. Genetic. Program. Evol. Mach. 6(2), 163–190 (2005)

    Google Scholar 

  24. Trautmann, H., Wagner, T., Brockhoff, D.: Focused multiobjective search using R2-indicator-based selection. In: Learning and Intelligent Optimization, pp. 70–74. Springer, Berlin Heidelberg (2013)

    Google Scholar 

  25. Wagner, T., Trautmann, H., Brockhoff, D.: Reference articulation by means of the R2 indicator. In: Evolutionary Multi-criterion Optimization (EMO 2013), vol. 7811, 81–95 (2013)

    Google Scholar 

  26. Brockhoff, D., Wagner, T., Trautmann, H.: On the properties of the R2 indicator. In: Genetic and Evolutionary Computation Conference (GECCO 2012), pp. 465–472 (2012)

    Google Scholar 

  27. von der Lippe, M.: Deskriptive Statistik. Oldenburg Verlag (2006)

    Google Scholar 

  28. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on the design of pareto compliant indicators via weighted integration. EMO 2007, 862–876 (2007)

    Google Scholar 

  29. Deb, K., Pratap, A., Agarwal, S.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  30. Rosenthal, S., Borschbach, M.: Impact of population size, selection and multi-parent recombination within a customized NSGA-II for biochemical optimization. Int. J. Adv. Life Sci. IARIA 6(3&4), 310–324 (2014)

    Google Scholar 

  31. Bäck, T., Schütz, M.: Intelligent mutation rate control in canonical genetic algorithm. In: Proceedings of the International Symposium on Methodology for Intelligent systems, pp. 158–167 (1996)

    Google Scholar 

  32. BioJava: CookBook, release 3.0 http://www.biojava.org/wiki/BioJava. Cite January 2014

  33. Cleland, J.L., Langer, R., Washington, D.C.: Formulation and Delivery of Proteins and Peptides: Design and Development Strategies, pp. 1–19. American Chemical Society (1994)

    Google Scholar 

  34. Hopp, T.P., Woods, K.R.: A computer program for predicting protein antigenic determinants. Mol. Immunol. 20(4), 483–489 (1983)

    Article  Google Scholar 

  35. Hansch, C., Björkroth, J., Leo, A.: Hydrophobicity and central nervous system agents: on the principle of minimal hydrohpobicity in drug design. J. Pharmacol. Sci. 76(9), 663–687 (1987)

    Article  Google Scholar 

  36. Rosenthal, S., Freisleben, B., Borschbach, M.: Aggregate selection in multi- objective biochemical optimization via the average cuboid volume indicator. In: Emmerich et al. (eds.) EVOLVE—A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation VI (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Rosenthal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rosenthal, S., Borschbach, M. (2017). Average Cuboid Volume as a Convergence Indicator and Selection Criterion for Multi-objective Biochemical Optimization. In: Emmerich, M., Deutz, A., Schütze, O., Legrand, P., Tantar, E., Tantar, AA. (eds) EVOLVE – A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation VII. Studies in Computational Intelligence, vol 662. Springer, Cham. https://doi.org/10.1007/978-3-319-49325-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49325-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49324-4

  • Online ISBN: 978-3-319-49325-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics