Skip to main content

Gene–Environment Correlation as a Source of Stability and Diversity in Development

  • Chapter
  • First Online:
Gene-Environment Transactions in Developmental Psychopathology

Abstract

As free-ranging organisms develop, their phenotype at any particular point is an influence on the selection of future environments. New and more varied environments make once-similar individuals more different, and those increased differences cause even greater differences in environment. Reciprocal effect processes of this kind introduce nonindependence and nonlinearity into developmental models, violating the assumptions of simple linear regression models or the classical twin model. Nevertheless, twins are a crucial laboratory for understanding the environmental differentiation of genetically related individuals, informing developmental science for singletons as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anastasi, A. (1958). Heredity, environment, and the question “how?”. Psychological Review, 65(4), 197–208.

    Article  PubMed  Google Scholar 

  • Bartels, M., Rietveld, M. J. H., Van Baal, G. C. M., & Boomsma, D. I. (2002). Genetic and environmental influences on the development of intelligence. Behavior Genetics, 32(4), 237–249.

    Article  PubMed  Google Scholar 

  • Beam, C. R., & Turkheimer, E. (2013). Phenotype-environment correlations in longitudinal twin models. Development & Psychopathology, 25(1), 7–16.

    Article  Google Scholar 

  • Beam, C. R., Emery, R. E., Reynolds, C. A., Gatz, M., Turkheimer, E., & Pedersen, N. L. (2016). Widowhood and the stability of late life depressive symptomatology in the Swedish Adoption Twin Study of Aging. Behavior Genetics, 46(1), 100–113.

    Article  PubMed  Google Scholar 

  • Beam, C. R., Turkheimer, E., Dickens, W. T., & Davis, D. W. (2015). Twin differentiation of cognitive ability through phenotype to environment transmission: The Louisville Twin Study. Behavior Genetics, 45(6), 622–634.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergen, S. E., Gardner, C. O., & Kendler, K. S. (2007). Age-related changes in heritability of behavioral phenotypes over adolescence and young adulthood: A meta-analysis. Twin Research and Human Genetics, 10(03), 423–433.

    Article  PubMed  Google Scholar 

  • Bouchard, T. J. (2009). Genetic influence on human intelligence (Spearman’s g): How much? Annals of Human Biology, 36(5), 527–544.

    Article  PubMed  Google Scholar 

  • Bouchard, T. J. (2013). The Wilson effect: The increase in heritability of IQ with age. Twin Research and Human Genetics, 16(05), 923–930.

    Article  PubMed  Google Scholar 

  • Briley, D. A., & Tucker-Drob, E. M. (2013). Explaining the increasing heritability of cognitive ability across development: A meta-analysis of longitudinal twin and adoption studies. Psychological Science, 24(9), 1704–1713.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bronfenbrenner, U., & Ceci, S. J. (1994). Nature-nurture reconceptualized in developmental perspective: A bioecological model. Psychological Review, 101(4), 568–586.

    Article  PubMed  Google Scholar 

  • de Kort, J. M., Dolan, C. V., Kan, K.-J., van Beijsterveldt, C. E. M., Bartels, M., & Boomsma, D. I. (2014). Can GE-covariance originating in phenotype to environment transmission account for the Flynn Effect? Journal of Intelligence, 2(3), 82–105.

    Article  Google Scholar 

  • Dickens, W. T., & Flynn, J. R. (2001). Heritability estimates versus large environmental effects: The IQ paradox resolved. Psychological Review, 108(2), 346–369.

    Article  PubMed  Google Scholar 

  • Dolan, C. V., de Kort, J. M., van Beijsterveldt, T. C. E. M., Bartels, M., & Boomsma, D. I. (2014). GE covariance through phenotype to environment transmission: An assessment in longitudinal twin data and application to childhood anxiety. Behavior Genetics, 44(3), 240–253.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischbein, S. (1978). Heredity-environment interaction in the development of twins. International Journal of Behavioral Development, 1(4), 313–322.

    Article  Google Scholar 

  • Fischbein, S. (1986). Person-environment interaction in education setting. Report No. 1 from the Department of Educational Research, Stockholm Institute of Education.

    Google Scholar 

  • Fischbein, S., Guttman, R., Nathan, M., & Esrachi, A. (1990). Permissiveness-restrictiveness for twins and controls in two educational settings: The Swedish compulsory school and the Israeli kibbutz. Acta Geneticae Medicae et Gemellologiae, 39, 245–257.

    Article  PubMed  Google Scholar 

  • Fuller, J. L., & Thompson, W. R. (1960). Behavior genetics. New York: Wiley.

    Google Scholar 

  • Haworth, C. M. A., Wright, M. J., Luciano, M., Martin, N. G., de Geus, E. J. C., van Beijsterveldt, C. E. M., … Plomin, R. (2010). The heritability of general cognitive ability increases linearly from childhood to young adulthood. Molecular Psychiatry, 15(11), 1112–1120.

    Google Scholar 

  • Humphreys, L. G., & Davey, T. C. (1988). Continuity in intellectual growth from 12 months to 9 years. Intelligence, 12(2), 183–197.

    Article  Google Scholar 

  • Lewontin, R. C. (2006). The analysis of variance and the analysis of causes. International Journal of Epidemiology, 35(3), 520–525.

    Article  PubMed  Google Scholar 

  • Lickliter, R., & Harshaw, C. (2010). Canalization and malleability reconsidered: the developmental basis of phenotypic stability and variability. In K. Hood, C. Halpern, G. Greenberg, & R. Lerner (Eds.), Handbook of developmental science, behavior, and genetics (p. 491). Malden: Wiley.

    Google Scholar 

  • McCartney, K., Harris, M. J., & Bernieri, F. (1990). Growing up and growing apart: A developmental meta-analysis of twin studies. Psychological Bulletin, 107(2), 226–237.

    Article  PubMed  Google Scholar 

  • McGue, M., Bouchard, T. J., Iacono, W. G., & Lykken, D. T. (1993). Behavioral genetics of cognitive ability: A life-span perspective (pp. 59–76).

    Google Scholar 

  • Pedersen, N. L., Plomin, R., Nesselroade, J. R., & McClearn, G. E. (1992). A quantitative genetic analysis of cognitive abilities during the second half of the life span. Psychological Science, 3(6), 346–352.

    Article  Google Scholar 

  • Plomin, R. (1986). Multivariate analysis and developmental behavioral genetics: Developmental change as well as continuity. Behavior Genetics, 16(1), 25–43.

    Article  PubMed  Google Scholar 

  • Plomin, R., DeFries, J. C., & Loehlin, J. C. (1977). Genotype-environment interaction and correlation in the analysis of human behavior. Psychological Bulletin, 84(2), 309.

    Google Scholar 

  • Plomin, R., & Spinath, F. M. (2004). Intelligence: Genetics, genes, and genomics. Journal of personality and social psychology, 86(1), 112.

    Article  PubMed  Google Scholar 

  • Polderman, T. J., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47(7), 702–709.

    Article  PubMed  Google Scholar 

  • Roberts, R. C. (1967). Some concepts and methods in quantitative genetics. In J. Hirsch (Ed.), Behavior-genetic analysis (pp. 214–257). New York: McGraw-Hill.

    Google Scholar 

  • Scarr, S., & McCartney, K. (1983). How people make their own environments: A theory of genotype-environment effects. Child Development, 54, 424–435.

    PubMed  Google Scholar 

  • Tucker-Drob, E. M., & Briley, D. A. (2014). Continuity of genetic and environmental influences on cognition across the life span: a meta-analysis of longitudinal twin and adoption studies. Psychological Bulletin, 140(4), 949–979.

    Article  PubMed  PubMed Central  Google Scholar 

  • Turkheimer, E. (2000). Three laws of behavior genetics and what they mean. Current Directions in Psychological Science, 9(5), 160–164.

    Article  Google Scholar 

  • Turkheimer, E. (2004). Spinach and ice cream: Why social science is so difficult. In L. DiLalla (Ed.), Behavior genetics principles: Perspectives in development, personality, and psychopathology (pp. 161–189). Washington, DC: American Psychological Association.

    Google Scholar 

  • Turkheimer, E. (2006). Inter: Action and play [Review of the book Genes and behavior: Nature-nurture interplay explained]. PsycCRITIQUES, 51(43).

    Google Scholar 

  • Turkheimer, E., & Beam, C. R. (2012). Lindon Eaves: Master of developmental models. Festschrift in honor of Lindon Eaves. Edinburgh, Scotland.

    Google Scholar 

  • Turkheimer, E., & Gottesman, I. I. (1996). Simulating the dynamics of genes and environment in development. Development & Psychopathology, 8, 667–677.

    Article  Google Scholar 

  • Turkheimer, E., & Waldron, M. (2000). Nonshared environment: A theoretical, methodological, and quantitative review. Psychological Bulletin, 126, 78–108.

    Article  PubMed  Google Scholar 

  • Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14(6), 623–628.

    Article  PubMed  Google Scholar 

  • Turkheimer, E., Pettersson, E., & Horn, E. E. (2014). A phenotypic null hypothesis for the genetics of personality. Annual Review of Psychology, 65, 515–540.

    Article  PubMed  Google Scholar 

  • Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters. Nature, 150(3811), 563–565.

    Article  Google Scholar 

  • Wilson, R. S. (1983). The Louisville Twin Study: Developmental synchronies in behavior. Child Development, 54(2), 298–316.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Turkheimer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Beam, C.R., Turkheimer, E. (2017). Gene–Environment Correlation as a Source of Stability and Diversity in Development. In: Tolan, P., Leventhal, B. (eds) Gene-Environment Transactions in Developmental Psychopathology. Advances in Development and Psychopathology: Brain Research Foundation Symposium Series, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-49227-8_6

Download citation

Publish with us

Policies and ethics