Skip to main content

Fed-Batch Cultivation for High Density Culture of Pseudomonas Spp. for Bioinoculant Preparation

  • Chapter
  • First Online:
Modern Tools and Techniques to Understand Microbes

Abstract

Fed-batch has been widely accepted in industry for commercial production of biomolecules such as enzymes, therapeutic proteins, organic acids, amino acids and other primary and secondary metabolites. Recent progress in application of fed-batch for commercial and academic research is discussed with suitable examples. This chapter deals with both the mathematical and thumb rule-based design of fed-batch cultivation. Special attention is also given to LabVIEW-based data acquisition for building control routines for implementation of customized feed operations using peristaltic pump. Finally a case study for fed-batch cultivation of Pseudomonas spp. is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiba S, Nagai S, Nishi Y (1976) Fed batch culture of Saccharomyces cerevisiae: a perspective of computer control to enhance the productivity in baker’s yeast cultivation. Biotechnol Bioeng 18:1001–1016

    Article  CAS  PubMed  Google Scholar 

  • Bai Y (2004) The windows serial port programming handbook. Auerbach Publications/ACRC Press, New York

    Book  Google Scholar 

  • Banga JR, Irizarry-Rivera R, Seider WD (1998) Stochastic optimization for optimal and model-predictive control. Comput Chem Eng 22:603–612

    Article  CAS  Google Scholar 

  • Baumgärtner F, Sprenger GA, Albermann C (2015) Galactose-limited fed-batch cultivation of Escherichia coli for the production of lacto-N-tetraose. Enzym Microb Technol 75–76:37–43

    Article  Google Scholar 

  • Bideaux C, Alfenore S, Cameleyre X, Molina-Jouve C, Uribelarrea JL, Guillouet SE (2006) Minimization of glycerol production during the high-performance fed-batch ethanolic fermentation process in Saccharomyces cerevisiae, using a metabolic model as a prediction tool. Appl Environ Microbiol 72:2134–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerrone F, Duane G, Casey E, Davis R, Belton I, Kenny ST, O’Connor K (2014) Fed-batch strategies using butyrate for high cell density cultivation of Pseudomonas putida and its use as a biocatalyst. Appl Microbiol Biotechnol 98:9217–9228

    Article  CAS  PubMed  Google Scholar 

  • Fei Q, Brigham CJ, Lu J, Fu R, Sinskey AJ (2013) Production of branched-chain alcohols by recombinant Ralstonia eutropha in fed-batch cultivation. Biomass Bioenergy 56:334–341

    Article  CAS  Google Scholar 

  • Fiechter A, Seghezzi W (1992) Regulation of glucose metabolism in growing yeast cells. J Biotechnol 27:27–45

    Article  CAS  Google Scholar 

  • Gaur RS, Noam S, Kawaljeet K, Johri BN, Rossi P, Aragno M (2004) Diacetylphloroglucinol producing pseudomonads do not influence AM fungi in wheat rhizosphere. Curr Sci 86:453–457

    CAS  Google Scholar 

  • Hjersted JL, Henson MA (2006) Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models. Biotechnol Prog 22:1239–1248

    Article  CAS  PubMed  Google Scholar 

  • Horn U, Strittmatter W, Krebber A, Knüpfer U, Kujau M, Wenderoth R, Riesenberg D (1996) High volumetric yields of functional dimeric miniantibodies in Escherichia coli, using an optimized expression vector and high-cell-density fermentation under non-limited growth conditions. Appl Microbiol Biotechnol 46:524–532

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Gu T, Moo-Young M (2005) Data acquisition and control of a 22 L B. Braun fermenter using LabVIEW. Chem Eng Commun 192:137–144

    Article  CAS  Google Scholar 

  • Jones KO (2006) Comparison of genetic algorithms and particle swarm optimisation for fermentation feed profile determination. In: International conference on computer systems and technologies – Comp Syst Tech’ 2006

    Google Scholar 

  • Kim BS (2002) Production of medium chain length polyhydroxyalkanoates by fed-batch culture of Pseudomonas oleovorans. Biotechnol Lett 24:125–130

    Article  CAS  Google Scholar 

  • Kookos IK (2004) Optimization of batch and fed-batch bioreactors using simulated annealing. Biotechnol Prog 20:1285–1288

    Article  CAS  PubMed  Google Scholar 

  • Korz DJ, Rinas U, Hellmuth K, Sanders EA, Deckwer WD (1995) Simple fed-batch technique for high cell density cultivation of Escherichia coli. J Biotechnol 39:59–65

    Article  CAS  PubMed  Google Scholar 

  • Le Meur S, Zinn M, Egli T, Thöny-Meyer L, Ren Q (2014) Improved productivity of poly (4-hydroxybutyrate) (P4HB) in recombinant Escherichia coli using glycerol as the growth substrate with fed-batch culture. Microb Cell Factories 13:131. doi:10.1186/s12934-014-0131-2

    Article  Google Scholar 

  • Lecina M, Sarró E, Casablancas A, Gòdia F, Cairó JJ (2013) IPTG limitation avoids metabolic burden and acetic acid accumulation in induced fed-batch cultures of Escherichia coli M15 under glucose limiting conditions. Biochem Eng J 70:78–83

    Article  CAS  Google Scholar 

  • Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14:98–105

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Lee SY, Park S, Middelberg APJ (1999) Control of fed-batch fermentations. Biotechnol Adv 17:29–48

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Lee SG, Do H, Park JC, Kim E, Choe YH, Kim HJ (2013) Optimization of the pilot-scale production of an ice-binding protein by fed-batch culture of Pichiapastoris. Appl Microbiol Biotechnol 97:3383–3393

    Article  CAS  PubMed  Google Scholar 

  • Li X, Lin Y, Chang M, Jin Q, Wang X (2015a) Efficient production of arachidonic acid by Mortierella alpina through integrating fed-batch culture with a two-stage pH control strategy. Bioresour Technol 181:275–282

    Article  CAS  PubMed  Google Scholar 

  • Li J, Jaitzig J, Lu P, Süssmuth RD, Neubauer P (2015b) Scale-up bioprocess development for production of the antibiotic valinomycin in Escherichia coli based on consistent fed-batch cultivations. Microb Cell Factories 14:83. doi:10.1186/s12934-015-0272-y

    Article  Google Scholar 

  • Lim HC, Tayeb YJ, Modak JM, Bonte P (1986) Computational algorithms for optimal feed rates for a class of fed-batch fermentation: numerical results for penicillin and cell mass production. Biotechnol Bioeng 28:1408–1420

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Gong Z, Feng E, Yin H (2009) Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture. J Indus Manage Opt 5:835–850

    Article  Google Scholar 

  • Luus R (1994) Optimal control of batch reactors by iterative dynamic programming. J Process Control 4:218–226

    Article  CAS  Google Scholar 

  • Luus R (2000) Iterative dynamic programming. Chapman & Hall/CRC Press, Boca Raton

    Book  Google Scholar 

  • Mäder P, Kaiser F, Adholeya A, Singh R, Uppal HS, Sharma AK, Srivastava R, Sahai V, Aragno M, Wiemken A, Johri BN, Fried PM (2011) Inoculation of root microorganisms for sustainable wheat–rice and wheat–black gram rotations in India. Soil Biol Biochem 43:609–619

    Article  Google Scholar 

  • Modak JM, Lim HC (1989) Simple nonsingular control approach to fed-batch fermentation optimization. Biotechnol Bioeng 33:11–15

    Article  CAS  PubMed  Google Scholar 

  • Oh G, Moo-Young M, Chisti Y (1998) Automated fed-batch culture of recombinant Saccharomyces cerevisiae based on on-line monitored maximum substrate uptake rate. Biochem Eng J 1:211–217

    Article  CAS  Google Scholar 

  • Olofsson K, Rudolf A, Lidén G (2008) Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. J Biotechnol 134:112–120

    Article  CAS  PubMed  Google Scholar 

  • Park S, Ramirez WF (1988) Optimal production of secreted protein in fed-batch reactors. AIChE J 34:1550–1558

    Article  CAS  Google Scholar 

  • Pham HTB, Larsson G, Enfors SO (1998) Growth and energy metabolism in aerobic fed-batch cultures of Saccharomyces cerevisiae: Simulation and model verification. Biotechnol Bioeng 60:474–482

    Article  CAS  PubMed  Google Scholar 

  • Rani KY, Rao VSR (1999) Control of fermenters – a review. Bioprocess Eng 21:77–88

    Article  Google Scholar 

  • Reed G, Peppler HJ (1973) Baker’s yeast production. In: Reed G, Peppler HJ (eds) Yeast technology. Avi Publishing, Westport, pp 53–102

    Google Scholar 

  • Riesenberg D, Schulz V, Knorre WA, Pohl HD, Korz D, Sanders EA, Ross A, Deckwer WD (1991) High cell density cultivation of Escherichia coli at controlled specific growth rate. J Biotechnol 20:17–27

    Article  CAS  PubMed  Google Scholar 

  • Riesenberg D, Guthke R (1999) High-cell-density cultivation of microorganisms. Appl Microbiol Biotechnol 51:422–430

    Article  CAS  PubMed  Google Scholar 

  • Rocha M, Mendes R, Rocha O, Rocha I, Ferreira EC (2014) Optimization of fed-batch fermentation processes with bio-inspired algorithms. Expert Syst Appl 41:2186–2195

    Article  Google Scholar 

  • Saharan K, Sarma MVRK, Prakash A, Johri BN, Bisaria VS, Sahai V (2011) Shelf-life enhancement of bio-inoculant formulation by optimizing the trace metals ions in the culture medium for production of DAPG using fluorescent pseudomonad R62. Enzym Microb Technol 48:33–38

    Article  CAS  Google Scholar 

  • Salehmin MNI, Annuar MSM, Chisti Y (2014) High cell density fed-batch fermentation for the production of a microbial lipase. Biochem Eng J 85:8–14

    Article  CAS  Google Scholar 

  • Sarkar D, Modak JM (2003) Optimisation of fed-batch bioreactors using genetic algorithms: two control variables. Comput Aided Chem Eng 14:1127–1132

    Article  Google Scholar 

  • Sarma MVRK, Gautam A, Kumar L, Saharan K, Kapoor A, Shrivastava N, Sahai V, Bisaria VS (2013) Bioprocess strategies for mass multiplication of and metabolite synthesis by plant growth promoting pseudomonads for agronomical applications. Process Biochem 48:1418–1424

    Article  CAS  Google Scholar 

  • Shukla PK, Pushpavanam S (1998) Optimisation of biochemical reactors—an analysis of different approximations of fed-batch operation. Chem Eng Sci 53:341–352

    Article  CAS  Google Scholar 

  • Sun Z, Ramsay JA, Guay M, Ramsay BA (2006) Automated feeding strategies for high-cell-density fed-batch cultivation of Pseudomonas putida KT2440. Appl Microbiol Biotechnol 71:423–431

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Mushiga Y, Yamane T, Shimizu S (1988) Mass production of lipase by fed-batch culture of Pseudomonas fluorescens. Appl Microbiol Biotechnol 27:417–422

    Article  CAS  Google Scholar 

  • Suzuki T, Yamane T, Shimizu S (1990) Phenomenological background and some preliminary trials of automated substrate supply in pH-stat modal fed-batch culture using a setpoint of high limit. J Ferment Bioeng 69:292–297

    Article  CAS  Google Scholar 

  • Travis J, Kring J (2006) LabVIEW for everyone: graphical programming made easy and fun, 3rd edn. Part of the National Instruments Virtual Instrumentation Series, Prentice Hall

    Google Scholar 

  • Yamane T, Shimizu S (1984) Fed-batch techniques in microbial processes. In: Fiechter A (ed) Advances in biochemical engineering biotechnology, vol 30. Springer, Berlin, pp 147–194

    Google Scholar 

  • Yee L, Blanch HW (1992) Recombinant protein expression in high cell density fed-batch cultures of Escherichia coli. Nat Biotechnol 10:1550–1556

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Bisaria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mutturi, S., Sahai, V., Bisaria, V.S. (2017). Fed-Batch Cultivation for High Density Culture of Pseudomonas Spp. for Bioinoculant Preparation. In: Varma, A., Sharma, A. (eds) Modern Tools and Techniques to Understand Microbes. Springer, Cham. https://doi.org/10.1007/978-3-319-49197-4_24

Download citation

Publish with us

Policies and ethics