Skip to main content

Efficient Search of Relevant Structures in Complex Systems

  • Conference paper
  • First Online:
AI*IA 2016 Advances in Artificial Intelligence (AI*IA 2016)

Abstract

In a previous work, Villani et al. introduced a method to identify candidate emergent dynamical structures in complex systems. Such a method detects subsets (clusters) of the system elements which behave in a coherent and coordinated way while loosely interacting with the remainder of the system. Such clusters are assessed in terms of an index that can be associated to each subset, called Dynamical Cluster Index (DCI). When large systems are analyzed, the “curse of dimensionality” makes it impossible to compute the DCI for every possible cluster, even using massively parallel hardware such as GPUs.

In this paper, we propose an efficient metaheuristic for searching relevant dynamical structures, which hybridizes an evolutionary algorithm with local search and obtains results comparable to an exhaustive search in a much shorter time. The effectiveness of the method we propose has been evaluated on a set of Boolean models of real-world systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://developer.nvidia.com.

  2. 2.

    In one of the 10 runs, HyReSS failed to detect 1 of the first 50 RSs detected by the exhaustive search.

References

  1. Prokopenko, M., Boschetti, F., Ryan, A.J.: An information-theoretic primer on complexity, self-organization, and emergence. Complexity 15(1), 11–28 (2009)

    Article  MathSciNet  Google Scholar 

  2. Villani, M., Filisetti, A., Benedettini, S., Roli, A., Lane, D., Serra, R.: The detection of intermediate-level emergent structures and patterns. In: Miglino, O., et al. (eds.) Advances in Artificial Life, ECAL 2013, pp. 372–378. The MIT Press, Cambridge (2013)

    Chapter  Google Scholar 

  3. Gershenson, C., Fernandez, N.: Complexity and information: measuring emergence, self-organization, and homeostasis at multiple scales. Complex 18(2), 29–44 (2012)

    Article  Google Scholar 

  4. Amoretti, M., Gershenson, C.: Measuring the complexity of adaptive peer-to-peer systems. Peer-to-Peer Netw. Appl. 9(6), 1031–1046 (2016)

    Google Scholar 

  5. Febres, G., Jaff, K.: Calculating entropy at different scales among diverse communication systems. Complexity 21(S1), 330–353 (2016)

    Article  Google Scholar 

  6. Marull, J., Font, C., Padr, R., Tello, E., Panazzolo, A.: Energy landscape integrated analysis: a proposal for measuring complexity in internal agroecosystem processes (barcelona metropolitan region, 18602000). Ecol. Indic. 66, 30–46 (2016)

    Article  Google Scholar 

  7. Filisetti, A., Villani, M., Roli, A., Fiorucci, M., Serra, R.: Exploring the organisation of complex systems through the dynamical interactions among their relevant subsets. In: Andrews, P. et al., (eds.) Proceedings of the European Conference on Artificial Life 2015, ECAL 2015, pp. 286–293. The MIT Press (2015)

    Google Scholar 

  8. Villani, M., Roli, A., Filisetti, A., Fiorucci, M., Poli, I., Serra, R.: The search for candidate relevant subsets of variables in complex systems. Artif. Life 21(4), 412–431 (2015)

    Article  Google Scholar 

  9. Tononi, G., McIntosh, A., Russel, D., Edelman, G.: Functional clustering: identifying strongly interactive brain regions in neuroimaging data. Neuroimage 7, 133–149 (1998)

    Article  Google Scholar 

  10. Tononi, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. 91(11), 5033–5037 (1994)

    Article  Google Scholar 

  11. Filisetti, A., Villani, M., Roli, A., Fiorucci, M., Poli, I., Serra, R.: On some properties of information theoretical measures for the study of complex systems. In: Pizzuti, C., Spezzano, G. (eds.) WIVACE 2014. CCIS, vol. 445, pp. 140–150. Springer, Heidelberg (2014)

    Google Scholar 

  12. Chen, X., Ong, Y.S., Lim, M.H., Tan, K.C.: A multi-facet survey on memetic computation. IEEE Trans. Evol. Comput. 15(5), 591–607 (2011)

    Article  Google Scholar 

  13. Hu, X.M., Zhang, J., Yu, Y., Chung, H.S.H., Li, Y.L., Shi, Y.H., Luo, X.N.: Hybrid genetic algorithm using a forward encoding scheme for lifetime maximization of wireless sensor networks. IEEE Trans. Evol. Comput. 14(5), 766–781 (2010)

    Article  Google Scholar 

  14. Behbahani, S., de Silva, C.W.: Niching genetic scheme with bond graphs for topology and parameter optimization of a mechatronic system. IEEE/ASME Trans. Mechatron. 19(1), 269–277 (2014)

    Article  Google Scholar 

  15. Chang, D., Zhao, Y., Zheng, C.: A real-valued quantum genetic niching clustering algorithm and its application to color image segmentation. In: International Conference on Intelligent Computation and Bio-Medical Instrumentation (ICBMI), pp. 144–147, December 2011

    Google Scholar 

  16. Pereira, M.W., Neto, G.S., Roisenberg, M.: A topological niching covariance matrix adaptation for multimodal optimization. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2562–2569, July 2014

    Google Scholar 

  17. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Proceedings of the Second International Conference on Genetic Algorithms on Genetic Algorithms and Their Application, pp. 41–49. L. Erlbaum Associates Inc., Hillsdale (1987)

    Google Scholar 

  18. Beasley, D., Bull, D.R., Martin, R.R.: A sequential niche technique for multimodal function optimization. Evol. Comput. 1(2), 101–125 (1993)

    Article  Google Scholar 

  19. Manner, R., Mahfoud, S., Mahfoud, S.W.: Crowding and preselection revisited. In: Parallel Problem Solving From Nature, North-Holland, pp. 27–36 (1992)

    Google Scholar 

  20. Harik, G.R.: Finding multimodal solutions using restricted tournament selection. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 24–31. Morgan Kaufmann Publishers Inc., San Francisco (1995)

    Google Scholar 

  21. Lacy, S.E., Lones, M.A., Smith, S.L.: Forming classifier ensembles with multimodal evolutionary algorithms. In: IEEE Congress on Evolutionary Computation (CEC), pp. 723–729 (2015)

    Google Scholar 

  22. Will, A., Bustos, J., Bocco, M., Gotay, J., Lamelas, C.: On the use of niching genetic algorithms for variable selection in solar radiation estimation. Renew. Energy 50, 168–176 (2013)

    Article  Google Scholar 

  23. Yannibelli, V., Amandi, A.: A deterministic crowding evolutionary algorithm to form learning teams in a collaborative learning context. Expert Syst. Appl. 39(10), 8584–8592 (2012)

    Article  Google Scholar 

  24. Villani, M., Barbieri, A., Serra, R.: A dynamical model of genetic networks for cell differentiation. PloS one 6(3), e17703 (2011)

    Article  Google Scholar 

  25. Shalizi, C.R., Camperi, M.F., Klinkner, K.L.: Discovering Functional Communities in Dynamical Networks. In: Airoldi, E., Blei, D.M., Fienberg, S.E., Goldenberg, A., Xing, E.P., Zheng, A.X. (eds.) ICML 2006. LNCS, vol. 4503, pp. 140–157. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Sporns, O., Tononi, G., Edelman, G.: Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb. Cortex 10(2), 127–141 (2000)

    Article  Google Scholar 

  27. Cover, T., Thomas, A.: Elements of Information Theory, 2nd edn. Wiley-Interscience, New York (2006)

    MATH  Google Scholar 

  28. Villani, M., Carra, P., Roli, A., Filisetti, A., Serra, R.: On the robustness of the detection of relevant sets in complex dynamical systems. In: Rossi, F., Mavelli, F., Stano, P., Caivano, D. (eds.) WIVACE 2015. CCIS, vol. 587, pp. 15–28. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  29. Anzoise, V., Sardo, S.: Dynamic systems and the role of evaluation: the case of the green communities project. Eval. Program Plan. 54, 162–172 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the UE project “MD – Emergence by Design”, Pr.ref. 284625 7th FWP-FET program for providing the data, which where in turn kindly provided by the Green Community project, sponsored by the National Association for Municipalities and Mountain Communities (UNCEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Amoretti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Sani, L. et al. (2016). Efficient Search of Relevant Structures in Complex Systems. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds) AI*IA 2016 Advances in Artificial Intelligence. AI*IA 2016. Lecture Notes in Computer Science(), vol 10037. Springer, Cham. https://doi.org/10.1007/978-3-319-49130-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49130-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49129-5

  • Online ISBN: 978-3-319-49130-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics