Skip to main content

Effects of Environmental Pollutants Polycyclic Aromatic Hydrocarbons (PAH) on Photosynthetic Processes

  • Chapter
  • First Online:
Photosynthesis: Structures, Mechanisms, and Applications

Summary

Increasing pollution of the environment has become an important problem of the present era. Polycyclic aromatic hydrocarbons (PAHs) are widely known as anthropogenic pollutants harmful to plants, animals and humans. Plants are an integral component of the terrestrial ecosystem and have ability to take up, transform and accumulate environmental pollutants including PAHs. It has been shown that PAHs influence the biochemical and physiological processes in plants, just similar to other toxic organic compounds, i.e. herbicides. They not only change the processes of energetic metabolism, but also change mechanisms associated with plant growth and development. In this chapter we shall be discussing the effects of PAH on plant growth, particularly the photosynthetic apparatus. A comprehensive and updated knowledge of the effects of various PAHs including naphthalene, anthracene, pyrene, fluoranthene on the photosynthetic mechanisms has been presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahammed, G.J.; Yuan, H.L.; Ogweno, J.O.; Zhou, Y.H.; Xia, X.J.; Mao, W.H.; Shi, K.; Yu, J.Q. Brassino steroid alleviates phenanthrene and pyrene phytotoxicity by increasing detoxification activity and photosynthesis in tomato. Chemosphere, 2012, 86, 546–555.

    Article  CAS  PubMed  Google Scholar 

  • Aksmann, A.; Tukaj, Z. Intact anthracene inhibits photosynthesis in algal cells: a fluorescence induction study on Chlamydomonas reinhardtii cw92 strain. Chemosphere, 2008, 74, 26–32.

    Article  CAS  PubMed  Google Scholar 

  • Alkio, M.; Tabuchi, T.M.; Wang, X.C.; Colon-Carmona, A. Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. J. Exp. Bot., 2005, 56, 2983–2994.

    Article  CAS  PubMed  Google Scholar 

  • Ankley, G.; Mount, D.; Erickson, R.; Diamond, S.; Burkhard, L.; Sibley, P.; Cook, P. In: 9th Annual meeting of SETAC-Europe, Phototoxic polycyclic aromatic hydrocarbon in sediments: a model based approach for assessing risk. Leipzig, Germany, 1999.

    Google Scholar 

  • Asada, K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol., 2006, 141, 391–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • BaÅ‚dyga, B.; Wieczorek, J.; SmoczyÅ„ski, S.; Wieczorek, Z.; SmoczyÅ„ska, K. Pea plant response to anthracene present in soil. Pollut. J. Environ. Stud., 2005, 14, 397–401.

    Google Scholar 

  • Burritt, D. J. The polycyclic aromatic hydrocarbon phenanthrene causes oxidative stress and alters polyamine metabolism in the aquatic liverwort Riccia fluitans L. Plant Cell Environ., 2008, 31, 1416–1431.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S.; Schopfer, P. Hydroxyl-radical production in physiological reactions. A novel functions of peroxidase. Eur. J. Biochem., 1999, 260, 726–735.

    Article  CAS  PubMed  Google Scholar 

  • Collins, C.; Martin, I.; Fryer, M. Principal pathways for plant uptake of organic chemicals. Environment Agency, Rio House, Bristol, England, 2006.

    Google Scholar 

  • Desalme, D.; Binet, P.; Bernard, N.; Gilbert, D.; Toussaint, M.L.; Chiapusio, G. Atmospheric phenanthrene transfer and effects on two grassland species and their root symbionts: A microcosm study. Environ. Exp. Bot., 2011, 71, 146–151.

    Article  CAS  Google Scholar 

  • Duxbury, C.L.; Dixon, D.G.; Greenberg, B.M. Effects of simulated solar radiation on the bioaccumulation of polycyclic aromatic hydrocarbons by the duckweed Lemna gibba. Environ. Toxicol. Chem., 1997, 16, 1739–1748.

    Article  CAS  Google Scholar 

  • Gómez, S.R.; Andrades-Moreno, L.; Parra, R.; Valera-Burgos, J.; Real, M.; Mateos-Naranjo, E.; Cox, L.; Cornejo, J. Spartina densiflora demonstrates high tolerance to phenanthrene in soil and reduces it concentration. Mar. Pollut. Bull., 2011, 62, 1800–1808.

    Article  Google Scholar 

  • Graan, T.; Ort, D.R. Detection of oxygen-evolving photosystem II centers inactive in plastoquinone reduction. Biochim. Biophys. Acta, 1986, 852, 320–330.

    Article  CAS  Google Scholar 

  • Huang, X.D.; Lorelei, F.; Zeiler, D.; Dixon, G.; Greenberg B.M. Photoinduced toxicity of PAHs to the foliar region of Brassica napus (canola) and Cuumbis sativus (cucumber) in simulated solar radition. Ecotoxicol. Environ. Saf., 1996, 35, 190–197.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X.D.; McConkey, B.J.; Babu, T.S.; Greenberg, B.M. Mechanisms of photoinduced toxicity of photomodified anthracene to plants: inhibition of photosynthesis in the aquatic higher plant Lemna gibba (duckweed). Environ. Toxicol. Chem., 1997, 16, 1707–1715.

    CAS  Google Scholar 

  • Huang, X.D.; El-Alawi, Y.; Penrose, D.M.; Glick, B.R.; Greenberg, B.M. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ. Pollut., 2004, 130, 465–476.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, H.M.; Wade, T.; Sericano, J.L. Concentrations and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico, and United States. Atmos. Environ., 2003, 37, 2259–2267.

    Article  CAS  Google Scholar 

  • Jajoo, A.; Mekala, N.R.; Tomar, R.S.; Grieco, M.; Tikkanen, M.; Aro, E-M. Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on photosynthetic performance are not related to their aromaticity, J. Photochem. Photobiol. B:Biol., 2014, 137, 151–155.

    Article  CAS  Google Scholar 

  • Joner, E.J.; Corgié, S.C.; Amellal, N.; Leyval, C. Nutritional contributions to degradation of polycyclic aromatic hydrocarbons in a stimulated rhizosphere. Soil Biol. Biochem., 2002, 34, 859–864.

    Article  CAS  Google Scholar 

  • Kamath, R.; Schnoor, J.L.; Alvarez, P.J.J. Effects of plant derived substrates on expression of catabolic genes using a nah-lux reporter. Environ. Sci. Tech., 2004, 38, 1740–1745.

    Article  CAS  Google Scholar 

  • Kummerová, M.; Barták, M.; Dubová, J.; Tříska, J.; Zubrová, E.; Zezulka, Å . Inhibitory effect of fluoranthene on photosynthetic processes in lichens detected by chlorophyll fluorescence. Ecotoxicology, 2006, 15, 121–131.

    Article  PubMed  Google Scholar 

  • Kummerová, M.; Vanová, L.; Krulová, J.; Zezulká, S. The use of physiological characteristics for comparison of organic compounds phytotoxicity. Chemosphere, 2008, 71, 2050-2059.

    Article  PubMed  Google Scholar 

  • Kummerová, M.; Váňová, L.; FiÅ¡erová, H.; KlemÅ¡, M.; Zezulka, Å .; Krulová, J. Understanding the effect of organic pollutant fluoranthene on pea in vitro using cytokinins, ethylene, ethane and carbon dioxide as indicators. Plant Growth Regul., 2010, 61, 161–174.

    Article  Google Scholar 

  • Kummerová, M.; Zezulka, Å .; Váňová, L.; FiÅ¡erová, H. Effect of organic pollutant treatment on the growth of pea and maize seedlings. Cent. Eur. J. Biol., 2012, 7, 159–166.

    Google Scholar 

  • Kweon, O.; Kim S.J.; Jones, R.C.; Freeman, J.P.; Adjei, M.D.; Edmondson, R.D.; Cerniglia, C.E. A polyomic approach to elucidate the fluoranthene-degradative pathway in Mycobacterium vanbaalenii PYR-1. J. Bacteriol., 2007, 189, 4635–4647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavergne, J.; Briantais, J.M. Photosystem II heterogeneity, In: Oxygeneic Photosynthesis: The light reactions; Ort, R.D.; Yocum, C.F. Eds.; Kluwer Publishers, Dordrecht, The Netherlands, 1996; pp. 265–287.

    Google Scholar 

  • Li, J. H.; Gao, Y.; Wu, S.C.; Cheung, K.C.; Wang, X.R.; Wong, M. H. Physiological and Biochemical Responses of Rice (Oryza sativa L.) to Phenanthrene and Pyrene. Int. J. Phytorem., 2008, 10, 106–118.

    Article  CAS  Google Scholar 

  • Liu, H.; Weisman, D.; Ye, Y.B.; Cui, B.; Huang, Y.H.; Colon-Carmona, A.; Wang, Z.H. An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Sci., 2009, 17, 6357–6382.

    Google Scholar 

  • Marwood, C.A.; Solomon, K.R.; Greenberg, B.M. Chlorophyll fluorescence as a bioindicator of effects on growth in aquatic macrophytes from mixtures of polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem., 2001, 20, 890–898.

    Article  CAS  PubMed  Google Scholar 

  • Marwood, C.A.; Jim, K.T.; Bestari, R.; Gensemer, W.; Solomon, K.R.; Greenberg, B. M. Creosote toxicity to photosynthesis and plant growth in aquatic microcosms. Environ. Toxicol. Chem., 2003, 22, 1075–1085.

    Article  CAS  PubMed  Google Scholar 

  • Mathur, S.; Jajoo, A.; Mehta, P.; Bharti, S. Analysis of elevated temperature-induced inhibition of photosystem II by using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biol., 2011a, 13, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Mathur, S.; Allakhverdiev, S.I.; Jajoo, A. Analysis of the temperature stress on the dynamic of antenna size and reducing side heterogeneity of photosystem II in wheat leaves (Triticum aestivum). Biochim. Biophys. Acta, 2011b, 1807, 22–29.

    Article  CAS  PubMed  Google Scholar 

  • Mcconkey, B.J.; Duxbury, C.L.; Dixon, D.G.; Greenberg, B.M. Toxicity of a PAH photooxidation product to the bacteria Photobacterium phosphoreum and the duckweed Lemna gibba: Effects of phenanthrene and its primary photoproducts, phenantrene quinone. Environ. Toxicol. Chem., 1997, 16, 892–899.

    Article  CAS  Google Scholar 

  • Mehta, P.; Allakhverdiev, S.I.; Jajoo, A. Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynth. Res., 2010, 105, 249–255.

    Article  CAS  PubMed  Google Scholar 

  • Muratova, A.Y.; Turkovskaya, O.V.; Huebner, T.; Kuschk, P. Study of the efficacy of alfalfa and reed in the phytoremediation of hydrocarbon polluted soil. Appl. Biochem. Microbiol., 2003, 39, 599–605.

    Article  CAS  Google Scholar 

  • Muratova, A.Y.; Kapitonova, V.V.; Chernyshova, M.P.; Turkovskaya O.V.; Enzymatic activity of alfalfa in a phenanthrene-contaminated environment. World Agr. Sci. Eng. Tech., 2009, 58, 569–574.

    Google Scholar 

  • Oguntimehin, I.; Sakugawa, H. Fluoranthene fumigation and exogenous scavenging of reactive oxygen intermediates (ROI) in evergreen Japanese red pine seedlings (Pinus Densiflora Sieb. et. Zucc.). Chemosphere, 2008, 72, 747–754.

    Article  CAS  PubMed  Google Scholar 

  • Oguntimehin, I.; Nakatani, N.; Sukugawa, H. Phytotoxicities of fluoranthene and phenanthrene deposited on needle surfaces of the evergreen conifer, Japanese red pine (Pinus densiflora Sieb. et Zucc.). Environ. Pollut., 2008,154, 264–271.

    Article  CAS  PubMed  Google Scholar 

  • Oguntimehin, I.; Eissa, F.; Sakugawa, H. Negative effects of fluoranthene on the eco-physiology of tomato plants (Lycopersicon esculentum Mill). Chemosphere, 2010, 78, 877–884.

    Article  CAS  PubMed  Google Scholar 

  • Rentz, J.A.; Alvarez, P.J.J.; Schnoor, J.L. Repression of Pseudomonas putida phenanthrene-degrading activity by plant root extracts and exudates. Environ. Microbiol., 2004, 6, 574–583.

    Article  PubMed  Google Scholar 

  • Sverdrup, L.E.; Krogh, P.H.; Nielsen, T.; Kjaer, C.; Stenersen, J. Toxicity of eight polycyclic aromatic compounds to red clover (Trifolium pratense), ryegrass (Lolium perenne) and mustard (Sinapsis alba). Chemosphere,2003, 53, 993–1003.

    Article  CAS  PubMed  Google Scholar 

  • Tomar, R.S.; Jajoo, A. A quick investigation of the detrimental effects of environmental pollutant polycyclic aromatic hydrocarbon fluoranthene on the photosynthetic efficiency of wheat (Triticum aestivum). Ecotoxicology, 2013a, DOI 10.1007/s10646-013-1118-1.

    PubMed  Google Scholar 

  • Tomar, R.S.; Jajoo, A. Alteration in PSII heterogeneity under the influence of polycyclic aromatic hydrocarbon (fluoranthene) in wheat leaves (Triticum aestivum). Plant Sci., 2013b, 209, 58–63

    Article  Google Scholar 

  • Tomar, R.S.; Jajoo, A. Fluranthene, a polycyclic aromatic hydrocarbon, inhibits light as well as dark reactions of photosynthesis in wheat (Triticum aestivum), Ecotoxico. Environ. Safety, 2014, 109,110–115.

    Article  CAS  Google Scholar 

  • Tomar, R.S.; Jajoo, A. Photomodified fluranthene exerts more harmful effects as compared to intact fluoranthene by inhibiting growth and photosynthetic processes in wheat, Ecotoxico. Environ. Safety, 2015, 122, 31–36.

    Article  CAS  Google Scholar 

  • Tomar, R.S.; Sharma, A.; Jajoo, A. Assessment of phytotoxicity of anthracene in soybean (Glycine max) with a quick method of chlorophyll fluorescence. Plant Biol., 2015, 17, 870–876.

    Article  CAS  PubMed  Google Scholar 

  • Tongra, T.; Mehta, P.; Mathur, S.; Agrawal, D.; Bharti, S.; Los, D.A.; Allakhverdiev, S.I.; Jajoo, A. Computational analysis of fluorescence induction curves in intact spinach leaves treated at different pH. Biosystems, 2011,103, 158–163

    Article  CAS  PubMed  Google Scholar 

  • Tukaj, Z.; Aksmann A. Toxic effect of anthraquinone and phenanthrene quinone upon Scenedesmus strains (green algae) at low and elevated concentration of CO2. Chemosphere,2007, 66, 480–487.

    Article  CAS  PubMed  Google Scholar 

  • Upham, B.L.; Jahnke, L.S. Photooxidative reactions in chloroplast thylakoids. Evidence for a Fenton-type reaction by superoxide or ascorbate. Photosynth. Res., 1986, 8, 235–247.

    Article  CAS  PubMed  Google Scholar 

  • Vácha, R.; ÄŒechmánková, J.; Skála, J. Polycyclic aromatic hydrocarbons in soil and selected plants. Plant Soil Environ., 2010, 56, 434–443.

    Google Scholar 

  • Weisman, D.; Alkio, M.; Colón-Carmona, A. Transcriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana. BMC Plant Biol., 2010, 10, 59–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson, S.C.; Jones, K.C. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): A review. Environ. Pollut., 1993,81, 229–249.

    Article  CAS  PubMed  Google Scholar 

  • Yoshitomi, K.J.; Shann, J.R. Corn (Zea mays L) root exudates and their impact on 14C-Pyrene minerdization. Soil Biol. Biochem., 2001, 33, 1769–1776.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AJ would thank Department of Science and Technology (DST) India for the project (INT/RUS/RFBR/P-173). Rupal Singh Tomar is thanked for her help during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Jajoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jajoo, A. (2017). Effects of Environmental Pollutants Polycyclic Aromatic Hydrocarbons (PAH) on Photosynthetic Processes. In: Hou, H., Najafpour, M., Moore, G., Allakhverdiev, S. (eds) Photosynthesis: Structures, Mechanisms, and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-48873-8_11

Download citation

Publish with us

Policies and ethics