Skip to main content

Collaborative Delivery with Energy-Constrained Mobile Robots

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2016)

Abstract

We consider the problem of collectively delivering some message from a specified source to a designated target location in a graph, using multiple mobile agents. Each agent has a limited energy which constrains the distance it can move. Hence multiple agents need to collaborate to move the message, each agent handing over the message to the next agent to carry it forward. Given the positions of the agents in the graph and their respective budgets, the problem of finding a feasible movement schedule for the agents can be challenging. We consider two variants of the problem: in non-returning delivery, the agents can stop anywhere; whereas in returning delivery, each agent needs to return to its starting location, a variant which has not been studied before. We first provide a polynomial-time algorithm for returning delivery on trees, which is in contrast to the known (weak) \(\mathrm {NP}\)-hardness of the non-returning version. In addition, we give resource-augmented algorithms for returning delivery in general graphs. Finally, we give tight lower bounds on the required resource augmentation for both variants of the problem. In this sense, our results close the gap left by previous research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the nonreturning version we want agents to have the same “range”, hence we set their budget to \(\zeta \).

  2. 2.

    In the nonreturning version we assign a budget of \((1+\zeta )\) to clause agents.

  3. 3.

    We relocate a non-returning agent by adding an edge of length \((B-B_i)\).

  4. 4.

    Non-returning clause agents can do this if they are 3-resource-augmented; and we can prevent it for \((3-\varepsilon )\)-resource-augmentation by setting \(\zeta \) such that \((3-\varepsilon )\cdot (1+\zeta ) \ll 3\) (in fact the value of \(\zeta \) will be the same as for returning BudgetedDelivery, but we will use different bounds in the proof).

  5. 5.

    In the nonreturning version, variable agents have a budget of \(\zeta \) and clause agents a budget of \(1+\zeta \).

  6. 6.

    For non-returning agents we use (for \(\varepsilon < 2\)) the inequalities: \(\zeta = \tfrac{\varepsilon }{6-\varepsilon }< \tfrac{\varepsilon }{4} < \tfrac{\varepsilon }{2}\) and \((6-\varepsilon ) > 2(3-\varepsilon )\). Hence a non-returning \(\gamma \)-resource-augmented clause agent has a budget of \(\gamma (1+\zeta ) = (3-\varepsilon )(1+\zeta ) = 3-\varepsilon + \tfrac{(3-\varepsilon )\varepsilon }{6-\varepsilon }< 3-\tfrac{\varepsilon }{2} < 3-\zeta = 3\cdot (1-\tfrac{\zeta }{3})\), and thus cannot transport the message via its clause node.

References

  1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anaya, J., Chalopin, J., Czyzowicz, J., Labourel, A., Pelc, A., Vaxès, Y.: Convergecast and broadcast by power-aware mobile agents. Algorithmica 74(1), 117–155 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study (Princeton Series in Applied Mathematics). Princeton University Press, Princeton (2007)

    Google Scholar 

  4. Awerbuch, B., Betke, M., Rivest, R.L., Singh, M.: Piecemeal graph exploration by a mobile robot. Inf. Comput. 152(2), 155–172 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bärtschi, A., Chalopin, J., Das, S., Disser, Y., Geissmann, B., Graf, D., Labourel, A., Mihalák, M.: Collaborative Delivery with Energy-Constrained Mobile Robots, arXiv preprint. https://arxiv.org/abs/1606.05538 (2016)

  6. Bender, M.A., Slonim, D.K.: The power of team exploration: two robots can learn unlabeled directed graphs. In: 35th Symposium on Foundations of Computer Science, FOCS 1994, pp. 75–85 (1994)

    Google Scholar 

  7. Betke, M., Rivest, R.L., Singh, M.: Piecemeal learning of an unknown environment. Mach. Learn. 18(2), 231–254 (1995)

    Google Scholar 

  8. Biló, D., Disser, Y., Gualá, L., Mihal’ák, M., Proietti, G., Widmayer, P.: Polygon-constrained motion planning problems. In: Flocchini, P., Gao, J., Kranakis, E., der Heide, F.M. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 67–82. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  9. Chalopin, J., Das, S., Mihalák, M., Penna, P., Widmayer, P.: Data delivery by energy-constrained mobile agents. In: Flocchini, P., Gao, J., Kranakis, E., der Heide, F.M. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 111–122. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  10. Chalopin, J., Jacob, R., Mihalák, M., Widmayer, P.: Data delivery by energy-constrained mobile agents on a line. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 423–434. Springer, Heidelberg (2014)

    Google Scholar 

  11. Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Communication problems for mobile agents exchanging energy. In: 23rd International Colloquium on Structural Information and Communication Complexity SIROCCO 2016 (2016)

    Google Scholar 

  12. Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration by energy-constrained mobile robots. In: 22th International Colloquium on Structural Information and Communication Complexity SIROCCO 2015, pp. 357–369 (2015)

    Google Scholar 

  13. Demaine, E.D., Hajiaghayi, M., Mahini, H., Sayedi-Roshkhar, A.S., Oveisgharan, S., Zadimoghaddam, M.: Minimizing movement. ACM Trans. Algorithms 5(3), 1–30 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dereniowski, D., Disser, Y., Kosowski, A., Pajkak, D., Uznański, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph exploration. In: 12th ACM Symposium on Discrete Algorithms, SODA 2001, pp. 807–814 (2001)

    Google Scholar 

  16. Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree exploration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS, vol. 3894, pp. 341–351. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Dynia, M., Łopuszański, J., Schindelhauer, C.: Why robots need maps. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Edmonds, J., Johnson, E.L.: Matching, euler tours and the chinese postman. Math. Program. 5(1), 88–124 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  19. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Morgan & Claypool, San Rafeal (2012)

    MATH  Google Scholar 

  20. Fraigniaud, P., Ga̧sieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Networks 48(3), 166–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ortolf, C., Schindelhauer, C.: Online multi-robot exploration of grid graphs with rectangular obstacles. In: 24th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2012, pp. 27–36 (2012)

    Google Scholar 

  23. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33(2), 281–295 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the project ANR-ANCOR (anr-14-CE36-0002-01) and the SNF (project 200021L_156620).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bärtschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bärtschi, A. et al. (2016). Collaborative Delivery with Energy-Constrained Mobile Robots. In: Suomela, J. (eds) Structural Information and Communication Complexity. SIROCCO 2016. Lecture Notes in Computer Science(), vol 9988. Springer, Cham. https://doi.org/10.1007/978-3-319-48314-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48314-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48313-9

  • Online ISBN: 978-3-319-48314-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics