Skip to main content

Applications of Nanoparticles in the Treatment of Wastewater

  • Living reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

Contamination of drinking water is a major global problem as it causes irreversible damage to soil, plants, humans, and animals and spreads numerous epidemics and chronic diseases. Wastewater contains high concentration of metals, herbicides, pesticides, and toxic industrial effluents that can disrupt various biochemical processes in the animals and human beings and lead to alteration of enzyme activities/pathways which could cause various diseases and even genetic disorders. The worldwide population growth and climate change have posed serious threats to the availability of clean drinking water, and there is an urgent need for novel and innovative water treatment technologies to ensure continuous supply of pure drinking water. Moreover, the harmful effects and limitations of chemical-based water treatment processes are well known. A recent trend in nanotechnology shows the applications of nano-based materials, such as nano-adsorbents, nano-metals, nano-membranes, and photocatalysts, in various processes. Keeping all these factors in mind, the present chapter is aimed to summarize the use of nanoparticles in the remediation and treatment of wastewater. This chapter also deals with potential future applications of nanoparticle-based treatment methods and its comparison with conventional processes along with commercialization of products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3D EEM:

3D excitation-emission matrix fluorescence spectroscopy

ADK:

Adenylate kinase

AFM:

Atomic force microscopy

BET:

Brunauer–Emmett–Teller

COD:

Chemical oxygen demand

DLS:

Dynamic light scattering

EDX:

Energy-dispersive X-ray spectroscopy

EPS:

Extracellular polymeric substance

FTIR:

Fourier-transform infrared spectroscopy

HGMS:

High-gradient magnetic separation

HDC:

Hydrodechlorination

ICP-MS:

Inductively coupled plasma mass spectrometry

TBARS:

Lipid peroxidation

LB-EPS:

Loosely bound EPS

MNP:

Magnetic nanoparticles

MBC:

Minimum bactericidal concentration

MIC:

Minimum inhibitory concentration

NTO:

Nanocrystalline titanium dioxide

NaR:

Nitrate reductase

NiR:

Nitrite reductase

NOEC:

No observed effect concentration

nZVI:

Nano-zerovalent iron

OMWW:

Olive mill wastewater

OECD:

Organization for Economic Cooperation and Development

PAAH:

Poly-allylamine-hydrochloride

PAH:

Polycyclic aromatic hydrocarbons

PPK:

Polyphosphate kinase

PVP:

Polyvinylpyrrolidone

GSH:

Reduced glutathione

SEM:

Scanning electron microscope

SPIONS:

Super paramagnetic iron oxide nanoparticles

TGA:

Thermogravimetric

TSS:

Total suspended solids

TEM:

Transmission electron microscopy

TCE:

Trichloroethene

TETA:

Triethylenetetramine

UASB:

Upflow anaerobic sludge blanket

WSS:

Waste silicon sludge

WHO:

World Health Organization

XAS:

X-ray absorption spectroscopy

XRD:

X-ray diffraction

XPS:

X-ray photoelectron spectroscopy

References

  1. World Health Organization (2008) Guidelines for drinking water quality, 3rd edn. Geneva. Retrieved from http://www.who.int/water_sanitation_health/dwq/ fulltext.pdf

  2. Brezonik PL, Arnold WA (2012) Water chemistry: fifty years of change and progress. Environ Sci Technol 46:5650–5657

    Article  Google Scholar 

  3. Chen S, Zou Y, Yan Z, Shen W, Shi S, Zhang X, Wang H (2009) Carboxymethylated bacterial cellulose for copper and lead ion removal. J Hazard Mater 161:1355–1359

    Article  Google Scholar 

  4. Chen Y, Pan B, Li H, Zhang W, Lv L, Wu J (2010) Selective removal of Cu(II) ions by using cation-exchange resin-supported polyethyleneimine (PEI) nanoclusters. Environ Sci Technol 44:3508–3513

    Article  Google Scholar 

  5. Ivanov V, Tay JH, Tay STL, Jiang HL (2004) Removal of micro-particles by microbial granules used for aerobic wastewater treatment. Water Sci Technol 50:147–154

    Google Scholar 

  6. Pokhrel D, Viraraghavan T (2008) Arsenic removal from an aqueous solution by modified A. niger biomass: batch kinetic and isotherm studies. J Hazard Mater 150:818–825

    Article  Google Scholar 

  7. Vaclavikova M, Gallios GP, Hredzak S, Jakabsky S (2008) Removal of arsenic from water streams: an overview of available techniques. Clean Technol Envir 10:89–95

    Article  Google Scholar 

  8. Schulte J, Dutta J (2005) Nanotechnology in environmental protection and pollution. Sci Technol Adv Mater 6:219–220

    Article  Google Scholar 

  9. Auffan M, Shipley HJ, Yean S, Kan AT, Tomson M, Rose J, Bottero JY (2007) Nanomaterials as adsobents. In: Wiesner MR, Bottero JY (eds) Environmental nanotechnology: applications and impacts of nanomaterials. McGraw-Hill, New York, pp 371–392

    Google Scholar 

  10. Carlos L, Einschlag FSG, González MC, Mártire DO (2013) Applications of magnetite nanoparticles for heavy metal removal from wastewater. In: Einschlag FSG, Carlos L (eds) Wastewater - treatment technologies and recent analytical developments. InTech Publisher, Rijeka, Croatia,  pp 63–77

    Google Scholar 

  11. Laurent S, Forge D, Port M, Roch A, Robic C, Vander EL, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev 108:2064–2110

    Article  Google Scholar 

  12. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  Google Scholar 

  13. Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents – a critical review. J Hazard Mater 142:1–53

    Article  Google Scholar 

  14. Deliyanni EA, Peleka EN, Gallios GP, Matis KA (2010) A critical review of the separation of arsenic oxyanions from dilute aqueous solution (the contribution of LGICT). Int J Environ Pollut 8:286–304

    Google Scholar 

  15. Mayo JT, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin VL (2007) The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater 8:71–75

    Article  Google Scholar 

  16. Bedi PS, Kaur A (2015) An overview on uses of zinc oxide nanoparticles. WJPPS 4:1177–1196

    Google Scholar 

  17. Pandipriya J, Praveena E, Kuriakose RM, Suganiya MJA, Therese M, Nandhitha NM (2104) An insight into the selection of nanoparticle for removing contaminants in wastewater. Int J Eng Res Appl 4:203–208

    Google Scholar 

  18. Sushma D, Richa S (2015) Use of nanoparticles in water treatment: a review. Int Res J Environ Sci 4:103–106

    Google Scholar 

  19. Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  Google Scholar 

  20. Chalew TEA, Ajmani GS, Huang H, Schwab KJ (2013) Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121:1161–1166

    Google Scholar 

  21. Shirazi MRA, Shariati F, Keshavarz AK, Ramezanpour Z (2015) Toxic effect of aluminum oxide nanoparticles on green micro-algae Dunaliella salina. Int J Environ Res 9:585–594

    Google Scholar 

  22. Tanada S, Kabayama M, Kawasaki N, Sakiyama T, Nakamura T, Araki M, Tamura T (2003) Removal of phosphate by aluminum oxide hydroxide. J Colloid Interface Sci 257:135–140

    Article  Google Scholar 

  23. Kamika I, Tekere M (2017) Impacts of cerium oxide nanoparticles on bacterial community in activated sludge. AMB Express 7:1–11

    Article  Google Scholar 

  24. Dong Y, He K, Yin L, Zhang A (2007) A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties. Nanotechnology 18:1–6

    Google Scholar 

  25. Chang W, Shena Y, Xiea A, Tong W (2009) Preparation of Al2O3 supported nanoCu2O catalysts for the oxidative treatment of industrial wastewater. Russ J Phys Chem A 83:2308–2312

    Article  Google Scholar 

  26. Luo J, Steier L, Son MK, Schreier M, Mayer MT, Grätzel M (2016) Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett 16:1848–1857

    Article  Google Scholar 

  27. Mao P, Qi L, Liu X, Liu Y, Jiao Y, Chen S, Yang Y (2017) Synthesis of Cu/Cu2O hydrides for enhanced removal of iodide from water. J Hazard Mater 328:21–28

    Article  Google Scholar 

  28. McDonald KJ, Reddy KJ, Singh N, Singh RP, Mukherjee S (2015) Removal of arsenic from groundwater in West Bengal, India using CuO nanoparticle adsorbent. Environ Earth Sci 73:3593–3601

    Article  Google Scholar 

  29. Miao L, Wang C, Hou J, Wang P, Ao Y, Li Y, Yao Y, Lv B, Yang Y, You G, Xu Y, Gu Q (2017) Response of wastewater biofilm to CuO nanoparticle exposure in terms of extracellular polymeric substances and microbial community structure. Sci Total Environ 579:588–597

    Article  Google Scholar 

  30. Sukuda T, Tsunoyama H, Sakurai H (2011) Aerobic oxidations catalysed by colloidal nanogold. Chem Asian J 6:736–748

    Article  Google Scholar 

  31. Herves P, Perez-Lorenzo M, Liz-Marzan LM, Dzubiella J, Lu Y, Ballauff M (2012) Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem Soc Rev 41:5577–5587

    Article  Google Scholar 

  32. Environmental Protection Agency (2008) National primary drinking water regulations and contaminant candidate list. USEPA. Retrieved from https://www.epa.gov/dwstandardsregulations

  33. Wong MS, Alvarez PJJ, Fang YL, Akcin N, Nutt MO, Miller JT, Heck KN (2009) Cleaner water using bimetallic nanoparticle catalysts. J Chem Technol Biotechnol 84:158–166

    Article  Google Scholar 

  34. Nutt MO, Hughes JB, Wong MS (2005) Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. Environ Sci Technol 39:1346–1353

    Article  Google Scholar 

  35. Nutt MO, Heck KN, Alvarez P, Wong MS (2006) Improved Pd-on-Au bi metallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination. Appl Catal B Environ 69:115–125

    Article  Google Scholar 

  36. Fang Y-L, Heck KN, Alvarez PJJ, Wong MS (2011) Kinetics analysis of palladium/gold nanoparticles as colloidal hydrodechlorination catalysts. ACS Catal 1:128–138

    Article  Google Scholar 

  37. Wu Y, Li Z, Chen J, Yu C, Huang X, Zhao C, Duan L, Yang Y, Lu W (2015) Graphene nanosheets decorated with tunable magnetic nanoparticles and their efficiency of wastewater treatment. Mater Res Bull 68:234–239

    Article  Google Scholar 

  38. Tabassum A, Sunita D, Raj MS (2014) Antibacterial effect of magnesium oxide nanoparticle on water contaminated with E.coli. Res Rev J Microbiol Biotechnol 3:10–13

    Google Scholar 

  39. Srivastavaa V, Sharmab YC, Sillanpaa M (2015) Green synthesis of magnesium oxide nanoflower and its application for the removal of divalent metallic species from synthetic wastewater. Ceram Int 41:6702–6709

    Article  Google Scholar 

  40. Kovenklioglu S, Cao Z, Shah D, Farrauto RJ, Balko EN (1992) Direct catalytic hydride chlorination of toxic organics in wastewater. AICHE J 38:1003–1012

    Article  Google Scholar 

  41. Lowry GV, Reinhard M (2000) Pd-catalyzed TCE dechlorination in groundwater: solute effects, biological control, and oxidative catalyst regeneration. Environ Sci Technol 34:3217–3223

    Article  Google Scholar 

  42. Parekh A (2013) Use of magnetic nanoparticles for wastewater treatment. Massachusetts Institute of Technology, Cambridge, USA.

    Google Scholar 

  43. Asrarian R, Jadidian R, Parham H, Haghtalab S (2014) Removal of Aluminum from water and wastewater using magnetic iron oxide nanoparticles. Adv Mater Res 829:752–756

    Article  Google Scholar 

  44. Xu Y, Li C, Zhu X, Huang WE, Zhang D (2014) Application of magnetic nanoparticles in drinking water purification. Environ Eng Manag J 13:2023–2029

    Google Scholar 

  45. Peng Q, Liu Y, Zeng G, Xu W, Yang C, Zhang J (2010) Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae, on the surface of chitosan coated magnetic nanoparticles from aqueous solution. J Hazard Mater 177:676–682

    Article  Google Scholar 

  46. Aftabtalab A, Sadabadi H, Chakra CHS, Rao KV, Shaker S, Mahofa EP (2014) Magnetite nanoparticles (Fe3O4) synthesis for removal of Chromium (VI) from wastewater. IJSER 5:1419–1423

    Google Scholar 

  47. Butt RS, Nazir R, Khan MN, Hamid A, Deeba F (2014) Treatment of electroplating industry wastewater using iron nanoparticle doped spent tea waste charcoal. JBES 5:7–17

    Google Scholar 

  48. Shen YF, Tang J, Nie ZH, Wang YD, Ren Y, Zuo L (2009) Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep Purif Technol 68:312–319

    Article  Google Scholar 

  49. Gill SK, Singh G, Khatri M (2017) Synthesis and characterization of super paramagnetic iron oxide nanoparticles for water purification applications. IJETSR 4:355–359

    Google Scholar 

  50. Ehrampoush MH, Miria M, Salmani MH, Mahvi AH (2015) Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. J Environ Health Sci Eng 13:1–7

    Article  Google Scholar 

  51. Ding H, Li J, Gao Y, Zhao D, Shi D, Mao G, Liu S, Tan X (2015) Preparation of silica nanoparticles from waste silicon sludge. Powder Technol 284:231–236

    Article  Google Scholar 

  52. Iqbal M, Purkait TK, Goss GG, Bolton JR, El-Din MG, Veinot JGC (2016) Application of engineered Si nanoparticles in light-induced advanced oxidation remediation of a water-borne model contaminant. ACS Nano 10:5405–5412

    Article  Google Scholar 

  53. Jabna KK, Meera V (2017) Nanosilver as antimicrobial agent in treatment of water/wastewater. IJIRSE 3:399–406

    Google Scholar 

  54. Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45:1992–1998

    Article  Google Scholar 

  55. Zhang H (2013) Application of silver nanoparticles in drinking water purification. University of Rhode Island, Kingston, USA, pp 1–200

    Google Scholar 

  56. Mondal K, Sharma A (2014) Photocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials – a mini-review. In: Mishra A, Bellare JR (eds) Nanoscience & technology for mankind. The National Academy of Sciences, Allahabad, India, pp 36–72

    Google Scholar 

  57. Shahmoradi B, Ibrahim IA, Sakamoto N, Ananda S, Somashekar R, Row TNG, Byrappa K (2010) Photocatalytic treatment of municipal wastewater using modified neodymium doped TiO2 hybrid nanoparticles. J Environ Sci Health A 45:1248–1255

    Article  Google Scholar 

  58. Sthathatos E, Tsiourvas D, Lianos P (1999) Titanium dioxide films made from reverse micelles and their use for the photocatalytic degradation of adsorbed dyes. Colloids Surf A Physicochem Eng Asp 149:49–56

    Article  Google Scholar 

  59. Zhang K, Kemp KC, Chandra V (2012) Homogenous anchoring of TiO2 nanoparticles on graphene sheets for wastewater treatment. Mater Lett 81:127–130

    Article  Google Scholar 

  60. Lazar MA, Varghese S, Nair SS (2012) Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts 2:572–601

    Article  Google Scholar 

  61. Banerjee P, Das D, Mitra P, Sinha M, Dey S, Chakrabarti S (2014) Solar photocatalytic treatment of wastewater with zinc oxide nanoparticles and its ecotoxicological impact on Channa punctatus –a freshwater fish. J Mat Environ Sci 5:1206–1213

    Google Scholar 

  62. Otero-Gonzalez L, Field JA, Sierra-Alvarez R (2014) Fate and long term inhibitory impact of ZnO nanoparticles during high rate anaerobic wastewater treatment. J Environ Manag 135:110–117

    Article  Google Scholar 

  63. Ma R, Levard C, Judy JD, Unrine JM, Durenkamp M, Martin B, Jefferson B, Lowry GV (2014) Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environ Sci Technol 48:104–112

    Article  Google Scholar 

  64. Elmi F, Alinezhad H, Moulana Z, Salehian F, Tavakkoli SM, Asgharpour F, Fallah H, Elmi MM (2014) The use of antibacterial activity of ZnO nanoparticles in the treatment of municipal wastewater. Water Sci Technol 70:763–770

    Article  Google Scholar 

  65. Puay N-Q, Qiu G, Ting Y-P (2015) Effects of ZnO nanoparticles on biological wastewater treatment in a sequencing batch reactor. J Clean Prod 88:1–7

    Article  Google Scholar 

  66. Sirisha SAD, Mary A (2016) Green synthesis of nanoparticle of zinc and treatment of nanobeads for wastewater of alizarin red dye. Int J Environ Res Develop 6:11–16

    Google Scholar 

  67. Lamba R, Umar A, Mehta SK, Kansal SK (2015) ZnO doped SnO2 nanoparticles heterojunction photo-catalyst for environmental remediation. J Alloys Compd 653:327–333

    Article  Google Scholar 

  68. Su Y, Cui H, Li Q, Gao S, Shang JK (2013) Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles. Water Res 47:5018–5026

    Article  Google Scholar 

  69. Mahmoud ME, Abdelwahab MS, Fathallah EM (2013) Design of novel nano-sorbents based on nano-magnetic iron oxide–bound-nano-silicon oxide–immobilized-triethylenetetramine for implementation in water treatment of heavy metals. Chem Eng J 223:318–327

    Article  Google Scholar 

  70. Ruzmanova Y, Stoller M, Chianese A (2013) Photocatalytic treatment of olive mill wastewater by magnetic core titanium dioxide nanoparticles. Chem Eng Trans 32:2269–2274

    Google Scholar 

  71. Mahdavi S, Jalali M, Afkhami A (2013) Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles. Chem Eng Commun 200:448–470

    Article  Google Scholar 

  72. Daniel SCGK, Malathi S, Balasubramanian S, Sivakumar M, Sironmani TA (2014) Multifunctional silver, copper and zero valent iron metallic nanoparticles for wastewater treatment. In: Mishra AK (ed) Application of nanotechnology in water research. Wiley, Hoboken, pp 435–457

    Google Scholar 

  73. Wang T, Zhang D, Dai L, Chen Y, Dai X (2016) Effects of metal nanoparticles on methane production from waste-activated sludge and microorganism community shift in anaerobic granular sludge. Sci Rep 6:1–10

    Article  Google Scholar 

  74. Yang Y, Zhang C, Hu Z (2013) Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion. Environ Sci Proc Imp 15:39–48

    Article  Google Scholar 

  75. Dawson A, Kamat PV (2001) Semiconductor-metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/gold) nanoparticles. J Phys Chem B 105:960–966

    Article  Google Scholar 

  76. Subramanian V, Wolf EE, Kamat PV (2004) Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. J Am Chem Soc 126:4943–4950

    Article  Google Scholar 

  77. Arabatzis IM, Stergiopoulos T, Andreeva D, Kitova S, Neophytides SG, Falaras P (2003) Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. J Catal 220:127–135

    Article  Google Scholar 

  78. Orlov A, Jefferson D, Macleod N, Lambert R (2004) Photocatalytic properties of TiO2 modified with gold nanoparticles in the degradation of 4-chlorophenol in aqueous solution. Catal Lett 92:41–47

    Article  Google Scholar 

  79. Heck KN, Nutt MO, Alvarez P, Wong MS (2009) Deactivation resistance of Pd/Au nanoparticle catalysts for water-phase hydrodechlorination. J Catal 267:97–104

    Article  Google Scholar 

  80. Teevs L, Vorlop KD, Prube U (2011) Model study on the aqueous-phase hydrodechlorination of clopyralid on noble metal catalysts. Catal Commun 14:96–100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Kuddus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Ahmad, I.Z., Ahmad, A., Tabassum, H., Kuddus, M. (2017). Applications of Nanoparticles in the Treatment of Wastewater. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48281-1_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48281-1

  • Online ISBN: 978-3-319-48281-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics