Skip to main content

Extracellular Vesicles in Multiple Sclerosis as Possible Biomarkers: Dream or Reality?

  • Chapter
  • First Online:
Multiple Sclerosis: Bench to Bedside

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 958))

Abstract

Extracellular vesicles are recently described as specialized structures for intercellular communication. Their role in the central nervous system was diffusely studied in both physiological and pathological condition. In particular, an increased extracellular vesicle number was detected in several autoimmune diseases, including multiple sclerosis, a chronic autoimmune, inflammatory, demyelinating and neurodegenerative disease. This chapter summarizes the available information on the involvement of the extracellular vesicles in multiple sclerosis pathogenesis and their possible use as biomarker of therapy efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBB:

blood-brain barrier

CNS:

central nervous system

CSF:

cerebrospinal fluid

EEVs:

endothelial derived EV

EVs:

extracellular vesicles

IFN:

interferon

MMP:

matrix metalloproteinases

MRI:

magnetic resonance imaging

MS:

multiple sclerosis

MV:

membrane vesicles

PEVs:

Platelet derived EVs

PPMS:

primary progressive multiple sclerosis

PS:

phosphatidylserine

RRMS:

relapsing-remitting multiple sclerosis

SPMS:

secondary progressive multiple sclerosis

References

  • Antonucci F, Turola E, Riganti L, Caleo M, Gabrielli M, Perrotta C, Novellino L, Clementi E, Giussani P, Viani P, Matteoli M, Verderio C (2012) Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism. EMBO J 31:1231–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Barkhof F (2002) The clinico-radiological paradox in multiple sclerosis revisited. Curr Opin Neurol 15:239–245

    Article  PubMed  Google Scholar 

  • Barry OP, FitzGerald GA (1999) Mechanisms of cellular activation by platelet microparticles. Thromb Haemost 82:794–800

    CAS  PubMed  Google Scholar 

  • Barteneva NS, Fasler-Kan E, Bernimoulin M, Stern JN, Ponomarev ED, Duckett L, Vorobjev IA (2013) Circulating microparticles: square the circle. BMC Cell Biol 14:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaudoin AR, Grondin G (1991) Shedding of vesicular material from the cell surface of eukaryotic cells: different cellular phenomena. Biochim Biophys Acta 1071:203–219

    Article  CAS  PubMed  Google Scholar 

  • Bernard CC, Kerlero de Rosbo N (1992) Multiple sclerosis: an autoimmune disease of multifactorial etiology. Curr Opin Immunol 4:760–765

    Article  CAS  PubMed  Google Scholar 

  • Bianco F, Perrotta C, Novellino L, Francolini M, Riganti L, Menna E, Saglietti L, Schuchman EH, Furlan R, Clementi E, Matteoli M, Verderio C (2009) Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J 28:1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulanger CM (2010) Microparticles, vascular function and hypertension. Curr Opin Nephrol Hypertens 19:177–180

    Article  CAS  PubMed  Google Scholar 

  • Burger D, Schock S, Thompson CS, Montezano AC, Hakim AM, Touyz RM (2013) Microparticles: biomarkers and beyond. Clin Sci (Lond) 124:423–441

    Article  CAS  Google Scholar 

  • Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78:838–848

    Article  CAS  PubMed  Google Scholar 

  • Canault M, Leroyer AS, Peiretti F, Lesèche G, Tedgui A, Bonardo B, Alessi MC, Boulanger CM, Nalbone G (2007) Microparticles of human atherosclerotic plaques enhance the shedding of the tumor necrosis factor-alpha converting enzyme/ADAM17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1. Am J Pathol 171:1713–1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chargaff E, West R (1946) The biological significance of the thromboplastic protein of blood. J Biol Chem 166:189–197

    CAS  PubMed  Google Scholar 

  • Cherian P, Hankey GJ, Eikelboom JW, Thom J, Baker RI, McQuillan A, Staton J, Yi Q (2003) Endothelial and platelet activation in acute ischemic stroke and its etiological subtypes. Stroke 34:2132–2137

    Article  CAS  PubMed  Google Scholar 

  • Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19:43–51

    Article  CAS  PubMed  Google Scholar 

  • Colombo E, Borgiani B, Verderio C, Furlan R (2012) Microvesicles: novel biomarkers for neurological disorders. Front Physiol 3:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Combes V, Coltel N, Alibert M, van Eck M, Raymond C, Juhan-Vague I, Grau GE, Chimini G (2005) ABCA1 gene deletion protects against cerebral malaria: potential pathogenic role of microparticles in neuropathology. Am J Pathol 166:295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cossetti C, Smith JA, Iraci N, Leonardi T, Alfaro-Cervello C, Pluchino S (2012) Extracellular membrane vesicles and immune regulation in the brain. Front Physiol 3:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Broe ME, Wieme RJ, Logghe GN, Roels F (1977) Spontaneous shedding of plasma membrane fragments by human cells in vivo and in vitro. Clin Chim Acta 81:237–245

    Article  CAS  PubMed  Google Scholar 

  • Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, Bruno S, Bussolati B, Camussi G (2007) Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110:2440–2448

    Article  CAS  PubMed  Google Scholar 

  • Dignat-George F, Boulanger CM (2011) The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 31:27–33

    Article  CAS  PubMed  Google Scholar 

  • Distler JH, Pisetsky DS, Huber LC, Kalden JR, Gay S, Distler O (2005) Microparticles as regulators of inflammation: novel players of cellular crosstalk in the rheumatic diseases. Arthritis Rheum 52:3337–3348

    Article  CAS  PubMed  Google Scholar 

  • Doeuvre L, Plawinski L, Toti F, Anglés-Cano E (2009) Cell-derived microparticles: a new challenge in neuroscience. J Neurochem 110:457–468

    Article  CAS  PubMed  Google Scholar 

  • Dooner GJ, Colvin GA, Dooner MS, Johnson KW, Quesenberry PJ (2008) Gene expression fluctuations in murine hematopoietic stem cells with cell cycle progression. J Cell Physiol 214:786–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fauré J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, Grange J, Schoehn G, Goldberg Y, Boyer V, Kirchhoff F, Raposo G, Garin J, Sadoul R (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31:642–648

    Article  PubMed  Google Scholar 

  • Février B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16:415–421

    Article  PubMed  Google Scholar 

  • Fox RJ, Bethoux F, Goldman MD, Cohen JA (2006) Multiple sclerosis: advances in understanding, diagnosing, and treating the underlying disease. Cleve Clin J Med 73:91–102

    Article  PubMed  Google Scholar 

  • Gan X, Gould SJ (2011) Identification of an inhibitory budding signal that blocks the release of HIV particles and exosome/microvesicle proteins. Mol Biol Cell 22:817–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, László V, Pállinger E, Pap E, Kittel A, Nagy G, Falus A, Buzás EI (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68:2667–2688

    Article  PubMed  PubMed Central  Google Scholar 

  • Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94:3791–3799

    CAS  PubMed  Google Scholar 

  • Horstman LL, Jy W, Jimenez JJ, Bidot C, Ahn YS (2004) New horizons in the analysis of circulating cell-derived microparticles. Keio J Med 53:210–230

    Article  CAS  PubMed  Google Scholar 

  • Horstman LL, Jy W, Minagar A, Bidot CJ, Jimenez JJ, Alexander JS, Ahn YS (2007) Cell-derived microparticles and exosomes in neuroinflammatory disorders. Int Rev Neurobiol 79:227–268

    Article  CAS  PubMed  Google Scholar 

  • Hugel B, Martínez MC, Kunzelmann C, Freyssinet JM (2005) Membrane microparticles: two sides of the coin. Physiology (Bethesda) 20:22–27

    Article  CAS  Google Scholar 

  • Huttner HB, Corbeil D, Thirmeyer C, Coras R, Köhrmann M, Mauer C, Kuramatsu JB, Kloska SP, Doerfler A, Weigel D, Klucken J, Winkler J, Pauli E, Schwab S, Hamer HM, Kasper BS (2012) Increased membrane shedding – indicated by an elevation of CD133-enriched membrane particles – into the CSF in partial epilepsy. Epilepsy Res 99:101–106

    Article  CAS  PubMed  Google Scholar 

  • Jimenez J, Jy W, Mauro LM, Horstman LL, Ahn ER, Ahn YS, Minagar A (2005) Elevated endothelial microparticle-monocyte complexes induced by multiple sclerosis plasma and the inhibitory effects of interferon-beta 1b on release of endothelial microparticles, formation and transendothelial migration of monocyte-endothelial microparticle complexes. Mult Scler 11:310–315

    Article  CAS  PubMed  Google Scholar 

  • Jy W, Minagar A, Jimenez JJ, Sheremata WA, Mauro LM, Horstman LL, Bidot C, Ahn YS (2004) Endothelial microparticles (EMP) bind and activate monocytes: elevated EMP-monocyte conjugates in multiple sclerosis. Front Biosci 9:3137–3144

    Article  CAS  PubMed  Google Scholar 

  • Kasper LH, Shoemaker J (2010) Multiple sclerosis immunology: the healthy immune system vs the MS immune system. Neurology 74(Suppl 1):S2–S8

    Article  CAS  PubMed  Google Scholar 

  • Katsuda T, Kosaka N, Takeshita F, Ochiya T (2013) The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics 13:1637–1653

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Wieckowski E, Taylor DD, Reichert TE, Watkins S, Whiteside TL (2005) Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res 11:1010–1020

    CAS  PubMed  Google Scholar 

  • Köppler B, Cohen C, Schlöndorff D, Mack M (2006) Differential mechanisms of microparticle transfer to B cells and monocytes: anti-inflammatory properties of microparticles. Eur J Immunol 36:648–660

    Article  PubMed  Google Scholar 

  • Lacroix R, Plawinski L, Robert S, Doeuvre L, Sabatier F, Martinez de Lizarrondo S, Mezzapesa A, Anfosso F, Leroyer AS, Poullin P, Jourde N, Njock MS, Boulanger CM, Anglés-Cano E, Dignat-George F (2012) Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis. Haematologica 97:1864–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai CP, Breakefield XO (2012) Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 3:228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai RC, Yeo RW, Tan KH, Lim SK (2013) Exosomes for drug delivery – a novel application for the mesenchymal stem cell. Biotechnol Adv 31:543–551

    Article  CAS  PubMed  Google Scholar 

  • Lassmann H, Brück W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17:210–218

    Article  PubMed  Google Scholar 

  • Leppert D, Lindberg RL, Kappos L, Leib SL (2001) Matrix metalloproteinases: multifunctional effectors of inflammation in multiple sclerosis and bacterial meningitis. Brain Res Brain Res Rev 36:249–257

    Article  CAS  PubMed  Google Scholar 

  • Li CC, Eaton SA, Young PE, Lee M, Shuttleworth R, Humphreys DT, Grau GE, Combes V, Bebawy M, Gong J, Brammah S, Buckland ME, Suter CM (2013) Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biol 10:1333–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowery-Nordberg M, Eaton E, Gonzalez-Toledo E, Harris MK, Chalamidas K, McGee-Brown J, Ganta CV, Minagar A, Cousineau D, Alexander JS (2011) The effects of high dose interferon-β1a on plasma microparticles: correlation with MRI parameters. J Neuroinflammation 8:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, Wolinsky JS, Balcer LJ, Banwell B, Barkhof F, Bebo B Jr, Calabresi PA, Clanet M, Comi G, Fox RJ, Freedman MS, Goodman AD, Inglese M, Kappos L, Kieseier BC, Lincoln JA, Lubetzki C, Miller AE, Montalban X, O’Connor PW, Petkau J, Pozzilli C, Rudick RA, Sormani MP, Stüve O, Waubant E, Polman CH (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83:278–286

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucchinetti CF, Brück W, Rodriguez M, Lassmann H (1996) Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol 6:259–274

    Article  CAS  PubMed  Google Scholar 

  • Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    Article  CAS  PubMed  Google Scholar 

  • Marcos-Ramiro B, Oliva Nacarino P, Serrano-Pertierra E, Blanco-Gelaz MA, Weksler BB, Romero IA, Couraud PO, Tuñón A, López-Larrea C, Millán J, Cernuda-Morollón E (2014) Microparticles in multiple sclerosis and clinically isolated syndrome: effect on endothelial barrier function. BMC Neurosci 15:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Martino G, Hartung HP (1999) Immunopathogenesis of multiple sclerosis: the role of T cells. Curr Opin Neurol 12:309–321

    Article  CAS  PubMed  Google Scholar 

  • Marzesco AM (2013) Prominin-1-containing membrane vesicles: origins, formation, and utility. Adv Exp Med Biol 777:41–54

    Article  CAS  PubMed  Google Scholar 

  • Marzesco AM, Janich P, Wilsch-Bräuninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner WB (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118:2849–2858

    Article  CAS  PubMed  Google Scholar 

  • Minagar A, Jy W, Jimenez JJ, Sheremata WA, Mauro LM, Mao WW, Horstman LL, Ahn YS (2001) Elevated plasma endothelial microparticles in multiple sclerosis. Neurology 56:1319–1324

    Article  CAS  PubMed  Google Scholar 

  • Minagar A, Long A, Ma T, Jackson TH, Kelley RE, Ostanin DV, Sasaki M, Warren AC, Jawahar A, Cappell B, Alexander JS (2003) Interferon (IFN)-beta 1a and IFN-beta 1b block IFN-gamma-induced disintegration of endothelial junction integrity and barrier. Endothelium 10:299–307

    Article  CAS  PubMed  Google Scholar 

  • Minagar A, Maghzi AH, McGee JC, Alexander JS (2012) Emerging roles of endothelial cells in multiple sclerosis pathophysiology and therapy. Neurol Res 34:738–745

    Article  PubMed  Google Scholar 

  • Morel O, Jesel L, Freyssinet JM, Toti F (2011) Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol 31:15–26

    Article  CAS  PubMed  Google Scholar 

  • Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, D’Souza-Schorey C (2009) ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 19:1875–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C (2010) Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 123:1603–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pap E, Pállinger E, Pásztói M, Falus A (2009) Highlights of a new type of intercellular communication: microvesicle-based information transfer. Inflamm Res 58:1–8

    Article  CAS  PubMed  Google Scholar 

  • Peterson LK, Fujinami RS (2007) Inflammation, demyelination, neurodegeneration and neuroprotection in the pathogenesis of multiple sclerosis. J Neuroimmunol 184:37–44

    Article  CAS  PubMed  Google Scholar 

  • Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20:1487–1495

    Article  CAS  PubMed  Google Scholar 

  • Rozmyslowicz T, Majka M, Kijowski J, Murphy SL, Conover DO, Poncz M, Ratajczak J, Gaulton GN, Ratajczak MZ (2003) Platelet- and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIV. AIDS 17:33–42

    Article  CAS  PubMed  Google Scholar 

  • Sáenz-Cuesta M, Irizar H, Castillo-Triviño T, Muñoz-Culla M, Osorio-Querejeta I, Prada A, Sepúlveda L, López-Mato MP, López de Munain A, Comabella M, Villar LM, Olascoaga J, Otaegui D (2014b) Circulating microparticles reflect treatment effects and clinical status in multiple sclerosis. Biomark Med 8:653–661

    Article  PubMed  Google Scholar 

  • Sáenz-Cuesta M, Osorio-Querejeta I, Otaegui D (2014a) Extracellular vesicles in multiple sclerosis: what are they telling us? Front Cell Neurosci 8:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Sbai O, Ould-Yahoui A, Ferhat L, Gueye Y, Bernard A, Charrat E, Mehanna A, Risso JJ, Chauvin JP, Fenouillet E, Rivera S, Khrestchatisky M (2010) Differential vesicular distribution and trafficking of MMP-2, MMP-9, and their inhibitors in astrocytes. Glia 58:344–366

    PubMed  Google Scholar 

  • Scanu A, Molnarfi N, Brandt KJ, Gruaz L, Dayer JM, Burger D (2008) Stimulated T cells generate microparticles, which mimic cellular contact activation of human monocytes: differential regulation of pro- and anti-inflammatory cytokine production by high-density lipoproteins. J Leukoc Biol 83:921–927

    Article  CAS  PubMed  Google Scholar 

  • Scolding NJ, Morgan BP, Houston WA, Linington C, Campbell AK, Compston DA (1989) Vesicular removal by oligodendrocytes of membrane attack complexes formed by activated complement. Nature 339:620–622

    Article  CAS  PubMed  Google Scholar 

  • Selmi C, Mix E, Zettl UK (2012) A clear look at the neuroimmunology of multiple sclerosis and beyond. Autoimmun Rev 11:159–162

    Article  PubMed  Google Scholar 

  • Sheremata WA, Jy W, Delgado S, Minagar A, McLarty J, Ahn Y (2006) Interferon-beta1a reduces plasma CD31+ endothelial microparticles (CD31+EMP) in multiple sclerosis. J Neuroinflammation 3:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheremata WA, Jy W, Horstman LL, Ahn YS, Alexander JS, Minagar A (2008) Evidence of platelet activation in multiple sclerosis. J Neuroinflammation 5:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Shet AS, Aras O, Gupta K, Hass MJ, Rausch DJ, Saba N, Koopmeiners L, Key NS, Hebbel RP (2003) Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 102:2678–2683

    Article  CAS  PubMed  Google Scholar 

  • Sims PJ, Wiedmer T (2001) Unraveling the mysteries of phospholipid scrambling. Thromb Haemost 86:266–275

    CAS  PubMed  Google Scholar 

  • Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747

    Article  CAS  PubMed  Google Scholar 

  • Steinman L (1996) Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85:299–302

    Article  CAS  PubMed  Google Scholar 

  • Théry C (2011) Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep 3:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Turola E, Furlan R, Bianco F, Matteoli M, Verderio C (2012) Microglial microvesicle secretion and intercellular signaling. Front Physiol 3:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Poll D, Parekkadan B, Cho CH, Berthiaume F, Nahmias Y, Tilles AW, Yarmush ML (2008) Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology 47:1634–1643

    Article  PubMed  Google Scholar 

  • VanWijk MJ, VanBavel E, Sturk A, Nieuwland R (2003) Microparticles in cardiovascular diseases. Cardiovasc Res 59:277–287

    Article  CAS  PubMed  Google Scholar 

  • Verderio C, Muzio L, Turola E, Bergami A, Novellino L, Ruffini F, Riganti L, Corradini I, Francolini M, Garzetti L, Maiorino C, Servida F, Vercelli A, Rocca M, Dalla Libera D, Martinelli V, Comi G, Martino G, Matteoli M, Furlan R (2012) Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Ann Neurol 72:610–624

    Article  CAS  PubMed  Google Scholar 

  • Vickers KC, Remaley AT (2012) Lipid-based carriers of microRNAs and intercellular communication. Curr Opin Lipidol 23:91–97

    Article  CAS  PubMed  Google Scholar 

  • Wheway J, Latham SL, Combes V, Grau GE (2014) Endothelial microparticles interact with and support the proliferation of T cells. J Immunol 193:3378–3387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, Nolte-‘t Hoen EN, Piper MG, Sivaraman S, Skog J, Théry C, Wauben MH, Hochberg F (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2:1–25

    Article  Google Scholar 

  • Yuan A, Farber EL, Rapoport AL, Tejada D, Deniskin R, Akhmedov NB, Farber DB (2009) Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One 4:e4722

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, Sun F, Lu J, Yin Y, Cai X, Sun Q, Wang K, Ba Y, Wang Q, Wang D, Yang J, Liu P, Xu T, Yan Q, Zhang J, Zen K, Zhang CY (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39:133–144

    Article  CAS  PubMed  Google Scholar 

  • Zinger A, Latham SL, Combes V, Byrne S, Barnett MH, Hawke S, Grau GE (2016) Plasma levels of endothelial and B-cell-derived microparticles are restored by fingolimod treatment in multiple sclerosis patients. Mult Scler [Epub ahead of print]

    Google Scholar 

  • Zwaal RF, Schroit AJ (1997) Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 89:1121–1132

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the University of Palermo and PhD funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiana Geraci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barreca, M.M., Aliotta, E., Geraci, F. (2017). Extracellular Vesicles in Multiple Sclerosis as Possible Biomarkers: Dream or Reality?. In: Asea, A., Geraci, F., Kaur, P. (eds) Multiple Sclerosis: Bench to Bedside. Advances in Experimental Medicine and Biology, vol 958. Springer, Cham. https://doi.org/10.1007/978-3-319-47861-6_1

Download citation

Publish with us

Policies and ethics