Skip to main content

Chemical Signals

  • Living reference work entry
  • First Online:
Encyclopedia of Animal Cognition and Behavior

Synonyms

Gustatory signals; Olfactory signals

Related

Pheromones, Chemical cues, Olfactory cues, Gustatory cues, Kin-recognition, MHC, Arm-pit effect, Self-referent phenotype matching

Definition

Chemical signals can be defined as messages transmitted through chemosensory modalities (smell and taste) and include things like pheromones, which are secreted chemical signals used to trigger a response in another individual. This section includes chemical communication with little effort to distinguish between cues and signals. For some, the difference between a cue and a signal relates to intentionality or whether the communication is incidental (Maynard-Smith and Harper 2003). For others, costs and benefits to the sender and the receiver help make the determination between signals and cues, and this is tied closely to evolutionary analysis (Laidre and Johnstone 2013). Therefore, I will review the diversity of messages possible and the unique aspects of gustation and olfaction as...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bland, K. P., & Jubilan, B. M. (1987). Correlation of flehmen by male sheep with female behavior and oestrus. Animal Behaviour, 35, 735–738.

    Article  Google Scholar 

  • Burton, R. (1976). The language of smell. London: Routledge & Kegan Paul Ltd..

    Google Scholar 

  • Caldwell, R. L. (1985). A test of individual recognition in the stomatopod Gonodactylus festae. Animal Behaviour, 33, 101–106.

    Article  Google Scholar 

  • Cornu, J.-N., Cancel-Tassin, G., Ondet, V., Girardet, C., & Cussenot, O. (2011). Olfactory detection of prostate cancer by dogs sniffing urine: A step forward in early diagnosis. European Urology, 59(2), 197–201. https://doi.org/10.1016/j.eururo.2010.10.006.

    Article  PubMed  Google Scholar 

  • Cozzi, B., Huggenberger, S., & Oelschläger, H. (2016). Anatomy of dolphins (1st ed.). Cambridge, MA: Academic Press.

    Google Scholar 

  • Crosland, H. R., Goodman, M., & Hockett, A. (1926). Anosmia and its effects upon taste perceptions. Journal of Experimental Psychology, 9, 398–408.

    Article  Google Scholar 

  • Dunbar, I. F. (1977). Olfactory preferences in dogs: The response of male and female beagles to conspecific odors. Behavioral Biology, 20(4), 471–481. https://doi.org/10.1016/S0091-6773(77)91079-3.

    Article  PubMed  Google Scholar 

  • Feng, P., Zheng, J., Rossiter, S. J., Wang, D., & Zhao, H. (2014). Massive losses of taste receptor genes in toothed and baleen whales. Genome Biology and Evolution, 6, 1254–1265. https://doi.org/10.1093/gbe/evu095.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton, W. D. (1964). The genetical evolution of social behaviour, I. II. Journal of Theoretical Biology, 7, 1–52.

    Article  Google Scholar 

  • Hardie, J., Nottingham, S. F., Powell, W., & Wadhams, L. J. (1991). Synthetic aphid sex pheromone lures female parasitoids. Entomologia Experimentalis et Applicata, 61, 97–99.

    Article  Google Scholar 

  • Hyman, A., Mentzer, T., & Calderone, L. (1979). The contribution of olfaction to taste discrimination. Bulletin of the Psychonomic Society, 13(6), 359–362.

    Google Scholar 

  • Laidre, M. E., & Johnstone, R. A. (2013). Animal signals. Current Biology, 23(18), R829–R833. https://doi.org/10.1016/j.cub.2013.07.070.

    Article  PubMed  Google Scholar 

  • Lawson, R. E., Putman, R. J., & Fielding, A. H. (2001). Chemical communication in Eurasian deer (Cervidae): Do individual odours also code for attributes? Journal of Zoology, 253(1), 91–99.

    Article  Google Scholar 

  • Linsenmair, K. E. (1987). Kin recognition in subsocial arthropods, in particular in the desert isopods Hemilepistus reaumuri. In D. J. C. Fletcher & C. D. Michener (Eds.), Kin recognition in animals (pp. 121–208). New York: Wiley.

    Google Scholar 

  • Mackay Sim, A., & Laing, D. G. (1980). Discrimination of odors from stressed rats by non-stressed rats. Physiology and Behavior, 24(4), 699–704.

    Article  Google Scholar 

  • Mateo, J. M. (2003). Kin recognition in ground squirrels and other rodents. Journal of Mammalogy, 84, 1163–1181.

    Article  Google Scholar 

  • Mateo, J. M. (2010). Self-referent phenotype matching and long-term maintenance of kin recognition. Animal Behaviour, 80, 929–935.

    Article  Google Scholar 

  • Mateo, J. M., & Johnston, R. E. (2000). Kin recognition and the ‘armpit effect’: Evidence of self-referent phenotype matching. Proceedings of the Royal Society of London B Biological Sciences, 267(1444), 695–700.

    Article  Google Scholar 

  • Mateo, J. M., & Johnston, R. E. (2003). Kin recognition by self-referent phenotype matching: Weighing the evidence. Animal Cognition, 6, 73–76.

    Article  Google Scholar 

  • Maynard-Smith, J., & Harper, D. (2003). Animal signals. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Mead, K. S., & Caldwell, R. L. (2011). Mantis shrimp: Olfactory apparatus and chemosensory behavior. In T. Breihaupt & M. Thiel (Eds.), Chemical communication in crustaceans (pp. 219–238). New York: Springer.

    Google Scholar 

  • Mueller-Schwarze, D. (1979). Flehmen in the context of mammalian urine communication. Chemical ecology: Odour communication in animals. Amsterdam: Elsevier/North Holland Biomedical Press.

    Google Scholar 

  • Nachtigall, P. E. (1986). Vision, audition, and chemoreception in dolphins and other marine mammals. In R. J. Schusterman, J. A. Thomas, & F. G. Wood (Eds.), Dolphin cognition and behavior: A comparative approach (pp. 79–113). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Sayigh, L. S., Tyack, P. L., Wells, R. S., Solow, A. R., Scott, M. D., & Irvine, A. B. (1998). Individual recognition in wild bottlenose dolphins: A field test using playback experiments. Animal Behaviour, 57, 41–50.

    Article  Google Scholar 

  • Schaefer, M. L., Yamazaki, K., Osada, K., Restrepo, D., & Beauchamp, G. K. (2002). Olfactory fingerprints for major histocompatibility complex-determined body odors II: Relationship among odor maps, genetics, odor composition, and behavior. Journal of Neuroscience, 22(21), 9513–9521.

    Article  Google Scholar 

  • Sherman, P. W. (1977). Nepotism and the evolution of alarm calls. Science, 197(4310), 1246–1253.

    Article  Google Scholar 

  • Swaisgood, R. R., Lindburg, D. G., & Zhang, H. (2002). Discrimination of oestrous status in giant pandas (Ailuropoda melanoleuca) via chemical cues in urine. Journal of Zoology, 257(3), 381–386.

    Article  Google Scholar 

  • Symonds, M. R., Johnson, T. L., & Elgar, M. A. (2012). Pheromone production, male abundance, body size, and the evolution of elaborate antennae in moths. Ecology and Evolution, 2(1), 227–246. https://doi.org/10.1002/ece3.81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thom, M. D., & Hurst, J. L. (2004). Individual recognition by scent. Annales Zoologici Fennici, 41(6), 765–787.

    Google Scholar 

  • Tibbetts, E. A., & Dale, J. (2007). Individual recognition: It is good to be different. Trends in Ecology & Evolution, 22(10), 529–537. https://doi.org/10.1016/j.tree.2007.09.001.

    Article  Google Scholar 

  • Todrank, J., & Heth, G. (1996). Individual odours in two chromosomal species of blind, subterranean mole rat (Spalax ehrenbergi): Conspecific and cross-species discrimination. Ethology, 102, 806–811.

    Article  Google Scholar 

  • Todrank, J., Heth, G., & Johnston, R. E. (1998). Kin recognition in golden hamsters: Evidence for kinship odours. Animal Behaviour, 55(2), 377–386.

    Article  Google Scholar 

  • Vetter, K. M., & Caldwell, R. (2015). Individual recognition in stomatopods. In L. Aquiloni & E. Tricarico (Eds.), Social recognition in invertebrates: The knowns and the unknowns (p. 266). Switzerland: Springer.

    Google Scholar 

  • Zenuto, R. R., & Fanjul, M. S. (2002). Olfactory discrimination of individual scents in the subterranean rodent Ctenomys talarum (tuco-tuco). Ethology, 108(7), 629–641.

    Article  Google Scholar 

  • Zuk, M., & Kolluru, G. R. (1998). Explotations of sexual signals by predators and parasitoids. The Quarterly Review of Biology, 73, 415–438.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason N. Bruck .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bruck, J.N. (2019). Chemical Signals. In: Vonk, J., Shackelford, T. (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-47829-6_1654-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47829-6_1654-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47829-6

  • Online ISBN: 978-3-319-47829-6

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics