Skip to main content

Mucosa-Associated Lymphoid Tissues

  • Chapter
  • First Online:
Immunopathology in Toxicology and Drug Development

Abstract

The mucosal immune system is organized as a complex of two large pools of single immune-competent cells within the epithelium (lymphocytes: IEL) and lamina propria (lymphocytes: LPL) of the mucosa; the lymph nodes draining the mucosa; and the more or less organized lymphoid tissues associated with the mucosal epithelium. Mucosa-associated lymphoid tissue (MALT) is defined here as the organized lymphoid tissues associated with the mucosal epithelium.

The body of humans and animals functions as a symbiotic ecosystem of cells and about a 10-fold higher number of microorganisms, which meet at mucosal barriers. The mucosal immune system plays an important role in this symbiotic relationship, maintaining a delicate balance of tolerating a health-promoting microbiome and allowing uptake of nutrients, while excluding potentially harmful pathogens. In turn, the microbiome is needed to ensure proper functioning of the immune system. Still, many aspects of mucosal immunity and their interrelationships are poorly understood, including the interplay with some non-lymphoid organs like the liver in gut immune functioning.

MALT is included in most guidelines on safety evaluation of drugs, chemicals and food constituents. In view of the importance of the body’s mucosal immunity, it is advisable to examine not only MALT at the site of application or exposure like today’s common practice, but to include distant MALT as well. There is a need for best practices to select, sample and embed MALT for histopathologic evaluation, because these aspects can profoundly influence the evaluation of MALT pathology and the interpretation of responses against xenobiotics.

Pathology reports on MALT and single mucosal immune cells are scarce, most likely due to the difficulty to dissect MALT or to properly evaluate MALT in situ, and the difficulty to sample LPL and IEL populations as FACS sorted suspensions. In addition, there may be high resilience in MALT against xenobiotic insults, exactly because of its importance as primary contact site to the outside world. Nevertheless MALT deserves specific attention. This chapter aims to present information on morphology and functioning of MALT to add in the assessment of changes in this important segment of our immune defense and homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

B cell:

‘Bone marrow- or bursa-derived’ lymphocyte mediating humoral immunity

BALT:

Bronchus-associated lymphoid tissue

CALT:

Conjunctiva-associated lymphoid tissue synonym of EALT

CLP:

Common lymphoid progenitor

CMC:

Connective tissue mast cell

CP:

Cryptopatch

DALT:

(Salivary) duct-associated lymphoid tissue

DC:

Dendritic cell

EALT:

Eye-associated lymphoid tissue synonym of CALT

ETALT:

Eustachian tube-associated lymphoid tissue

GALT:

Gut-associated lymphoid tissue

GIALT:

Gill-associated lymphoid tissue

GIEL:

Granulated intraepithelial lymphocyte

GL:

Globule/globular leukocyte

GVHD:

Graft versus host disease

HEV:

High endothelial venule

HSC:

Hematopoietic stem cell

iBALT:

Inducible BALT

IEL:

Intraepithelial lymphocyte

Ig:

Immunoglobulin

ILC:

Innate lymphoid cell

LALT:

Laryngopharynx-associated lymphoid tissue

LDALT:

Lacrimal duct-associated lymphoid tissue

LFV:

Lymphocyte-filled villus

LPL:

Lamina propria lymphocyte

LTi:

Lymphoid tissue inducer (cell)

MALT:

Mucosa-associated lymphoid tissue

MC:

Mast cell

M-cell:

Microfold (epithelial) cell

MCT :

Human tryptase-positive chymase-negative mast cell (resembles MMC)

MCTC :

Human tryptase- and chymase-positive mast cell (resembles CMC)

MHC:

Major histocompatibility complex (HLA in humans)

MMC:

Mucosal mast cell

NALT:

Nasopharynx/nasal-associated lymphoid tissue

NK:

Natural killer lymphocyte

PP:

Peyer’s patch

SALT:

Skin-associated lymphoid tissue

SILT:

Solitary intestinal lymphoid tissue

T cell:

‘Thymus-derived’ lymphocyte mediating cellular immunity

TALT:

Trachea-associated lymphoid tissue

Th2:

T helper 2 lymphocyte

References

  • Agace WM (2008) T-cell recruitment to the intestinal mucosa. Trends Immunol 29(11):514–522

    Article  CAS  PubMed  Google Scholar 

  • Arinobu Y, Iwasaki H, Gurish MF, Mizuno S-I, Shigematsu H, Ozawa H, Tenen DG, Akashi K (2005) Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis. Proc Natl Acad Sci 102:18105–18110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arts JHE, van Triel J, De Jong W, Van Loveren H, Kuper CF (2008) The respiratory local lymph node assay as a tool to study respiratory sensitizers. Toxicol Sci 106:423–434

    Article  CAS  PubMed  Google Scholar 

  • Asanuma H, Hodson Thompson A, Iwasaki T, Sato Y, Inaba Y, Aizawa C (1997) Isolation and characterization of mouse nasal-associated lymphoid tissue. J Immunol Methods 202:1123–1131

    Google Scholar 

  • Azzali G (2003) Structure, lymphatic vascularization and lymphocyte migration in mucosa-associated lymphoid tissue. Immunol Rev 195:178–189

    Article  PubMed  Google Scholar 

  • Beagley KW, Fujihashi K, Lagoo AS, Lagoo-Deenadaylan S, Black CA, Murray AM, Sharmanov AT, Yamamoto M, McGhee JR, Elson CO, Kiyono H (1995) Differences in intraepithelial lymphocyte T cell subsets isolated from murine small versus large intestines. J Immunol 154:5611–5619

    CAS  PubMed  Google Scholar 

  • Bhalla DK, Murakami T, Owen RL (1981) Microcirculation of intestinal lymphoid follicles in rat Peyer’s patches. Gastroenterology 81:481–491

    CAS  PubMed  Google Scholar 

  • Bowcutt R, Forman R, Glymenaki M, Carding SR, Else KJ, Cruickshank SM (2014) Heterogeneity across the murine small and large intestine. World J Gastroenterol 20(41):15216–15232

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowden TJ, Cook P, Rombout JHWM (2005) Development and function of the thymus in teleost. Fish Shellfish Immunol 19:413–427

    Article  CAS  PubMed  Google Scholar 

  • Brandtzaeg P (1997) Mucosal immunity in the female genital tract. J Reprod Immunol 36:23–50

    Article  CAS  PubMed  Google Scholar 

  • Brandtzaeg P (2013) Secretory immunity with special reference to the oral cavity. J Oral Microbiol 5: doi. 10.3402/jom.v5i0.20401

  • Brandtzaeg P, Pabst R (2004) Let’s go mucosal: communication on slippery ground. Trends Immunol 25(11):570–577

    Article  CAS  PubMed  Google Scholar 

  • Brandtzaeg P, Kiyono H, Pabst R, Russell MW (2008) Terminology: nomenclature of mucosa-associated lymphoid tissue. Mucosal Immunol 1(1):31–37

    Article  CAS  PubMed  Google Scholar 

  • Branton SL, Lott BD, Morgan GW, Deaton JW (1987) Research note: position of Meckel’s diverticulum in broiler-type chickens. Poult Sci 67:677–679

    Article  Google Scholar 

  • Bruder MC, Spanhaak S, Bruijntjes JP, Michielsen CPPC, Vos JG, Kuper CF (1999) Intestinal T lymphocytes of different rat strains in immunotoxicity. Toxicol Pathol 27:171–179

    Article  CAS  PubMed  Google Scholar 

  • Butler JE, Sinkora M (2013) The enigma of the lower gut-associated lymphoid tissue (GALT). J Leukoc Biol 94(2):259–70. doi:10.1189/jlb.0313120

    Article  CAS  PubMed  Google Scholar 

  • Bykova V, Pakina V, Payushina O, Satdykova G (2003) Lymphoepithelial compartment of human palatine tonsils as a structural homologue of the thymus. Int Congr 1257:75–80

    Article  Google Scholar 

  • Casteleyn C, Broos AMC, Simoens P, Van den Broeck W (2010a) NALT (nasal cavity-associated lymphoid tissue) in the rabbit. Vet Immunol Immunopathol 133:212–218

    Article  CAS  PubMed  Google Scholar 

  • Casteleyn C, Doom M, Lambrechts E, Van den Broeck W, Simoens P, Cornillie P (2010b) Locations of gut-associated lymphoid tissue in the 3-month-old chicken: a review. Avian Pathol 39:143–50

    Article  CAS  PubMed  Google Scholar 

  • Casteleyn C, Breugelmans S, Simoens P, Van den Broeck W (2011) The tonsils revisited: review of the anatomical localization and histological characteristics of the tonsils of domestic and laboratory animals. Clin Dev Immunol 2011:1–14. doi:10.1155/2011/472460

    Article  Google Scholar 

  • Cesta MF (2006) Normal structure, function, and histology of mucosa-associated lymphoid tissue. Toxicol Pathol 34:599–608

    Article  PubMed  Google Scholar 

  • Cheers C, Waller R (1975) Activated macrophages in congenitally athymic “nude” mice and in lethally irradiated mice. J Immunol 115(3):844–847

    CAS  PubMed  Google Scholar 

  • Cherrier M, Ohnmacht C, Cording S, Eberl G (2012) Development and function of intestinal innate lymphoid cells. Curr Opin Immunol 24(3):277–83

    Article  CAS  PubMed  Google Scholar 

  • Chiba K (2005) FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine1-phosphate receptors. Pharmacol Ther 108:308–319

    Article  CAS  PubMed  Google Scholar 

  • Cording S, Medvedovic J, Cherrier M, Eberl G (2014) Development and regulation of RORγt(+) innate lymphoid cells. FEBS Lett 588(22):4176–81

    Article  CAS  PubMed  Google Scholar 

  • Corr SC, Gahan CC, Hill C (2008) M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol Med Microbiol 52(1):2–12

    Article  CAS  PubMed  Google Scholar 

  • Cowley SC (2014) MAIT cells and pathogen defense. Cell Mol Life Sci 71:4831–4840

    Article  CAS  PubMed  Google Scholar 

  • Dahlin JS, Hallgren J (2015) Mast cell progenitors: origin, development and migration to tissues. Mol Immunol 63:9–17

    Article  CAS  PubMed  Google Scholar 

  • Davis IA, Knight KA, Rouse BT (1998) The spleen and organized lymph nodes are not essential for the development of gut-induced mucosal immune responses in lymphotoxin-α deficient mice. Clin Immunol Immunopathol 89(2):150–159

    Article  CAS  PubMed  Google Scholar 

  • Debard N, Sierro F, Kraehenbuhl J-P (1999) Development of Peyer’s patches, follicle-associated epithelium and M cell: Lessons from immunodeficient and knockout mice. Semin Immunol 11:183–191

    Article  CAS  PubMed  Google Scholar 

  • Demoruelle MK, Solomon JJ, Fischer A, Deane K (2014) The lung may play a role in the pathogenesis of rheumatoid arthritis. Int J Clin Rheumatol 9(3):295–309

    Article  CAS  Google Scholar 

  • Eberl G, Sawa S (2010) Opening the crypt: current facts and hypotheses on the function of cryptopatches. Trends Immunol 31(2):50–5

    Article  CAS  PubMed  Google Scholar 

  • Elmore SA (2006) Enhanced histopathology of mucosa-associated lymphoid tissue. Toxicol Pathol 34:687–697

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmore SA (2012) Enhanced histopathology of the immune system: a review and update. Toxicol Pathol 40:148–156

    Google Scholar 

  • Escrivá L, Font G, Manyes L (2015) In vivo toxicity studies of fusarium mycotoxins in the last decade: a review. Food Chem Toxicol 78:185–206

    Article  PubMed  CAS  Google Scholar 

  • Fan L, Iseki S (1999) Immunohistocehmical localization of vascular endothelial growth factor in the globule leukocyte/mucosal mast cell of the rat respiratory and digestive tracts. Histochem Cell Biol 111:13–21

    Article  CAS  PubMed  Google Scholar 

  • Ferreira M, Domingues RG, Veiga-Fernandes H (2012) Stroma cell priming in enteric lymphoid organ morphogenesis. Front Immunol 3:219. doi:10.3389/fimmu.2012.00219

    PubMed  PubMed Central  Google Scholar 

  • Foo FY, Phipps S (2010) Regulation of inducible BALT formation and contribution to immunity and pathology. Mucosal Immunol 3(6):537–44

    Article  CAS  PubMed  Google Scholar 

  • Frith CH, Ward JM, Harleman JH, Stromberg S, Halm S, Inue T, Wright JA (2001) Hematopoietic system. In: Capen CC, Dungworth DL, Mohr U (eds) International classification of rodent tumors. The mouse. Springer Verlag, Berlin, pp 417–451

    Google Scholar 

  • Gabyani I, Muller PA, Feighery L, Oliveira TY, Costa-Pinto FA, Mucida D (2016) Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164:1–14

    Article  Google Scholar 

  • Gemma H, Sato A (1989) Effect of glucocorticoid on lung tissue and bronchus-associated lymphoid tissue of experimental granulomatous lung. Kekkaku 64:387–399

    Google Scholar 

  • Gommerman JL, Rojas OL, Fritz JH (2014) Re-thinking the functions of IgA+ plasma cells. Gut Microbes 5(5):652–662

    Article  PubMed  PubMed Central  Google Scholar 

  • Haley P (2003) Species differences in the structure and function of the immune system. Toxicology 188:49–71

    Article  CAS  PubMed  Google Scholar 

  • Herbrand H, Pabst O (2011) Cryptopatches and isolated lymphoid follicles: aspects of development, homeostasis and function. In: Balogh P (ed) Developmental biology of peripheral lymphoid organs. Springer, Berlin, Heidelberg, p 107–117. doi:10.1007/978-3-642-14429-5_10

  • Hernandez MO, Mantis NJ (2015) Phenotypic analysis of a population of IgA+ cells in the follicle-associated epithelium of mouse Peyer’s patches. PLoS One 10:e0124111 doi:10.1371/journal.pone.0124111

  • Hitotsumatsu O, Hamada H, Naganuma M, Inoue N, Ishii H, Hibi T, Ishikawa H (2005) Identification and characterization of novel gut-associated lymphoid tissues in rat small intestine. J Gastroenterol 40(10):956–63

    Article  PubMed  Google Scholar 

  • Hougen HP (1991) The athymic nude rat. Immunobiological characteristics with special reference to establishment of non-antigen-specific T-cell reactivity and induction of antigen-specific immunity. APMIS Suppl 21:1–39

    CAS  PubMed  Google Scholar 

  • Huntley JF, McGorum B, Newlands GFJ, Miller HRP (1984) Granulated intraepithelial lymphocytes: their relationship to mucosal mast cells and globule leucocytes in the rat. Immunology 53:525–535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hyland KA, Brennan R, Olmsted SB, Rojas E, Murphy E, Wang B, Cleary PP (2009) The early interferon response of nasal-associated lymphoid tissue to Streptococcus pyogenes infection. FEMS Immunol Med Microbiol 55(3):422–431

    Article  CAS  PubMed  Google Scholar 

  • Igbokwe CO, Abah FC (2009) Comparative studies on the morphology and morphometry of the Meckel’s diverticulum in the Nigerian local chicken (Gallus domesticus) and exptic broiler-Anak 2000. Animal Science Reporter 3:103–109

    Google Scholar 

  • Ikeda Y, Yamashina S (1993) Developmental changes in intestinal globule leukocytes of normal rat. Cell Tissue Res 273:447–455

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa M, Kubo M, Maeda S, Sawada Y, Uchio E (2011) Structural changes in the lacrimal sac epithelium and associated lymphoid tissue during experimental dacryocystitis. Clin Ophthalmol 5:1567–1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob E, Baker SJ, Swaminathan SP (1987) ‘M’ cells in the follicle-associated epithelium of the human colon. Histopathology 11(9):941–952

    Article  CAS  PubMed  Google Scholar 

  • Jahnsen FL, Farstad IN, Aanesen JP, Brandtzaeg P (1998) Phenotypic distribution of T cells in human nasal mucosa differs from that in the gut. Am J Respir Cell Mol Biol 18(3):392–401

    Article  CAS  PubMed  Google Scholar 

  • Jensen A, Fagoe-Olsen H, Soerensen CJ, Kilian M (2013) Molecular mapping to species level of the tonsillar crypt microbiota associated with health and recurrent tonsillitis. PLoS One 8(2):e56418. doi:10.1371/journal.pone.0056418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang H, Yan M, Yu Q, Yang Q (2013) Characteristics of nasal-associated lymphoid tissue (NALT) and nasal absorption capacity in chicken. PLos One 8(12):e84097. doi:10.1371/journal.pone.0084097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karchev T, Watanabe N, Watanabe T, Kawauchi H, Mogi G (2003) M-cell subsets in SCID mice nasal tonsil. Int Congr 1257:87–91

    Article  Google Scholar 

  • Katakai T (2012) Marginal reticular cells: a stromal subset directly descended from the lymphoid tissue organizer. Front Immunol 3:200. doi:org/10.3389/fimmu.2012.00200

    Google Scholar 

  • Kemmerling J, Fehlert E, Kuper CF, Ruehl-Fehlert C, Stropp G, Vogels J, Krul C, Vohr H-W (2015) The transferability from rat subacute 4-week oral toxicity study to translational research exemplified by two pharmaceutical immunosuppressants and two environmental pollutants with immunomodulating properties. Eur J Pharmacol 759:326–342

    Google Scholar 

  • Kim CH, Hashimoto-Hill S, Kim M (2016) Migration and tissue tropism of innate lymphoid cells. Trends Immunol 37(1):68–79

    Article  CAS  PubMed  Google Scholar 

  • Krishnaswamy G, Ajitawi O, Chi DS (2006) The human mast cell: an overview. Methods Mol Biol 315:13–34

    PubMed  Google Scholar 

  • Kiyono H, Fukuyama S (2004) NALT-versus Peyer’s-patch-mediated mucosal immunity. Nat Rev Immunol 4:699–710

    Article  CAS  PubMed  Google Scholar 

  • Knop E, Knop N (2001) Lacrinal drainage-associated lymphoid tissue (LDALT): A part of the human mucosal immune system. Invest Opthalmol Vis Sci 42(3):566–574

    CAS  Google Scholar 

  • Kodama S, Suenaga S, Hirano T, Suzuki M, Mogi G (2000) Induction of specific immunoglobulin A and Th2 immune responses to outer membrane protein of nontypeable Haemophilus influenza in middle ear mucosa by intranasal immunization. Infect Immunol 68:2294–2300

    Article  CAS  Google Scholar 

  • Koornstra PJ, de Jong FICRS, Vlek LFM, Marres EHMA, van Breda Vriesman PJC (1991) The Waldeyer ring equivalent in the rat. Acta Otolaryngol 111:591–599

    Article  CAS  PubMed  Google Scholar 

  • Kuper CF, Koornstra PJ, Hameleers DMH, Biewenga J, Spit BJ, Duijvestijn AM, Van Breda Vriesman PJ, Sminia T (1992) The role of nasopharyngeal lymphoid tissue. Immunol Today 13:219–224

    Article  CAS  PubMed  Google Scholar 

  • Kuper CF, Schuurman H-J, Vos JG (1995) Pathology in immunotoxicology. In: Burleson GR, Dean JH, Munson AE (eds) Methods in immunotoxicology, vol 1. Wiley Liss, New York, pp 397–437

    Google Scholar 

  • Kuper CF, Harleman H, Richther-Reichhelm H, Vos JG (2000) Histopathologic approaches to detect changes indicative of immuntoxicity. Toxicol Pathol 28:454–466

    Article  CAS  PubMed  Google Scholar 

  • Kuper CF, Arts JHE, Feron VJ (2003) Toxicity to nasal-associated lymphoid tissue. Toxicol Lett 140–141:281–285

    Article  PubMed  CAS  Google Scholar 

  • Kuper CF (2006) Histopathology of mucosa-associated lymphoid tissue. Toxicol Pathol 34:609–615

    Google Scholar 

  • Kuper CF, Van Zijverden M, Klaassen C, Tegelenbosch-Schouten M, Wolterbeek APM (2007) Effects of cyclosporin A and cyclophosphamide on Peyer’s patches in rat, exposed in utero and neonatally or during adult age. Toxicol Pathol 35:226–232

    Article  CAS  PubMed  Google Scholar 

  • Kuper CF, van Oostrum L, Ma-Hock L, Durrer S, Woutersen R (2011) Hyperplasia of the lymphoepithelium of NALT in rats but not in mice upon 28-day exposure to 15 ppm formaldehyde vapor. Exp Toxicol Pathol 63:25–32

    Article  PubMed  CAS  Google Scholar 

  • Kuper CF, Ruel-Fehlert C, Elmore S, Parker G (2013) Immune system. In: Haschek-Hock WM, Rousseaux CG, Wallig MA (eds) Handbook of toxicologic pathology. Elsevier Academic, Amsterdam, pp 1795–1863

    Google Scholar 

  • Kurashima Y, Kiyono H (2014) New era for mucosal mast cells: their roles in inflammation, allergic immune responses and adjuvant development. Exp Mol Med 46:e83. doi:10.1038/emm.2014.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurd N, Robey EA (2014) Unconventional intraepithelial gut T cells: the TCR says it all. Immunity 41:167–168

    Article  CAS  PubMed  Google Scholar 

  • Kurono Y, Nagano H, Umakoshi M, Makise T (2012) Diversity of mucosal immune responses in upper respiratory airways and the suitability of mucosal vaccines. Clin Exp Allergy Rev 12:1–6

    Article  CAS  Google Scholar 

  • Lamichhane A, Azegami T, Kiyono H (2014) The mucosal immune system for vaccine development. Vaccine 32:6711–6723

    Article  CAS  PubMed  Google Scholar 

  • Landsverk T, Halleraker M, Aleksandersen M, McClure S, Hein W, Nicander L (1991) The intestinal habitat for organized lymphoid tissues in ruminants; comparative aspects of structure, function and development. Vet Immunol Immunopathol 28(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Lewis AL, Lewis WG (2012) Host sialoglycans and bacterial sialidases: a mucosal perspective. Cell Microbiol 14(8):1174–1182

    Article  CAS  PubMed  Google Scholar 

  • Liebler-Tenorio EM, Pabst R (2006) MALT structure and function in farm animals. Vet Res 37:257–280

    Google Scholar 

  • Lügering A, Ross M, Sieker M, Heidemann J, Williams IR, Domschke W, Kucharzik T (2010) CCR6 identifies lymphoid tissue inducer cells within cryptopatches. Clin Exp Immunol 160:440–449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lügering A, Kucharzik T (2006) Induction of intestinal lymphoid tissue: the role of cryptopatches. Ann NY Acad Sci 1072:210–217

    Article  PubMed  CAS  Google Scholar 

  • Lillehoj HS, Trout JM (1996) Avian gut-associated lymphoid tissues and intestinal immune responses to Eimeria parasites. Clin Microbiol Rev 9(3):349–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makala LHC, Suzuki N, Nagasawa H (2002) Peyer’s patches: organized lymphoid structures for the induction of mucosal responses in the intestines. Pathobiology 70:55–68

    Article  CAS  PubMed  Google Scholar 

  • Masieri S, Trabattoni D, Incorvaia C, De Luca MC, Dell’Albani I, Leo G, Frati F (2014) A role for Waldeyer’s ring in immunological response to allergens. Curr Med Res Opin 30(2):203–205

    Article  CAS  PubMed  Google Scholar 

  • Matsunga T, Rahman A (2001) In search of the origin of the thymus: the thymus and GALT may be evolutionary related. Scand J Immunol 53:1–6

    Article  Google Scholar 

  • Mestecky J (1987) The common mucosal immune system and current strategies for induction of immune responses in external secretions. J Clin Immunol 7:265–276

    Article  CAS  PubMed  Google Scholar 

  • Mestecky J, Fulz PN (1999) Mucosal immune system of the human genital tract. J Infect Dis 179:S470–474

    Article  PubMed  Google Scholar 

  • Moghaddami M, Cummins A, Mayrhofer G (1998) Lymphocyte-filled villi: comparison with other lymphoid aggregations in the mucosa of the human small intestine. Gastroenterology 115(6):1414–25

    Article  CAS  PubMed  Google Scholar 

  • Moolenbeek C, Ruitenberg EJ (1981) The ‘Swiss roll’: a simple technique for histological studies of the rodent intestine. Lab Anim 15:57–59

    Article  CAS  PubMed  Google Scholar 

  • Mowat AM (1990) Human intraepithelial lymphocytes. Springer Semin Immunopathol 12:165–190

    Article  CAS  PubMed  Google Scholar 

  • Mowat AM, Agace WW (2014) Regional specialization within the intestinal immune system. Nat Rev Immunol 14(10):667–85

    Article  CAS  PubMed  Google Scholar 

  • Nakajima-Adachi H, Kikuchi A, Fujimura Y, Shibahara K, Makino T, Goseki-Sone M, Kihara-Fujioka M, Nochi T, Kurashima Y, Igarashi O, Yamamoto M, Kunisawa J, Toda M, Kaminogawa S, Sato R, Kiyono H, Hachimura S (2014) Peyer’s patches and mesenteric lymph nodes cooperatively promote enteropathy in a mouse model of food allergy. PLoS One 9(10), e107492. doi:10.1371/journal.pone0107492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Newberry RD (2008) Intestinal lymphoid tissues: is variety an asset or a liability? Curr Opin Gastroenterol 24(2):121–8

    Article  PubMed  Google Scholar 

  • Nochi T, Denton PW, Wahl A, Garcia VJ (2013) Cryptopatches are essential for the development of human GALT. Cell Rep 3:1874–1884. doi:10.1016/j.celrep.2013.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada K, Yamasoba T, Kiyono H (2011) Craniofacial mucosal immune system: importance of its unique organogenesis and function in the development of a mucosal vaccine. Adv Otorhinolaryngol 72:31–36

    PubMed  Google Scholar 

  • Olah I, Glick B, Taylor RL Jr (1984) Meckel’s diverticulum. II. A novel lymphoepithelial organ in the chicken. Anat Rec 208:253–263

    Article  CAS  PubMed  Google Scholar 

  • Owen RL (1977) Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer’s patches in the normal unobstructed mouse intestine: an ultrastructural study. Gastroenterology 72:440–451

    CAS  PubMed  Google Scholar 

  • Owen RL, Piazza AJ, Ermak TH (1991) Ultrastructural and cytoarchitectural features of lymphoreticular organs in the colon and rectum of adult BALB/c mice. Am J Anat 190:10–8

    Article  CAS  PubMed  Google Scholar 

  • Pabst R (2007) Plasticity and heterogeneity of lymphoid organs. What are the criteria to call a lymphoid organ primary, secondary or tertiary? Immunol Lett 112:1–8

    Article  CAS  PubMed  Google Scholar 

  • Pabst R, Durak D, Roos A, Luehrmann A, Tschernig T (2008) TLR2/6 stimulation of the rat lung: effects on lymphocyte subsets, natural killer cells and dendritic cells in different parts of the air-conducting compartments and at different ages. Immunology 126(1):132–139

    Article  PubMed  CAS  Google Scholar 

  • Paxian S, Merkle H, Riemann M, Wild M, Adler G, Hameister H, Liptay S, Pfeffer K, Schmid RM (2002) Abnormal organogenesis of Peyer's patches in mice deficient for NF-κB1, NF-κB2, and Bcl-3. Gastroenterology 122(7):1853–1868

    Article  CAS  PubMed  Google Scholar 

  • Pearson C, Uhlig HH, Powrie F (2012) Lymphoid microenvironments and innate lymphoid cells in the gut. Trends Immunol 33(6):289–296

    Article  CAS  PubMed  Google Scholar 

  • Perez-Cano FJ, Castelotte C, Gonzalez-Castro AM, Pelegri C, Castell M, Franchi A (2005) Deevlopmental changes in intraepithelial T lymphocytes and NK cells in the small intestine of neonatal rats. Pediatr Res 5:885–891

    Article  Google Scholar 

  • Persson EK, Scott CL, Mowat AM, Agace WW (2013) Dendritic cell subsets in the intestinal lamina propria: ontogeny and function. Eur J Immunol 43(12):3098–3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinton P, Oswald IP (2014) Effect of deoxynivalenol and other type B Trichothecenes on the Intestine: a review. Toxins 6:1615–1643. doi:10.3390/toxins6051615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Yang Y, Yang H (2014) The unique surface molecules on intestinal intraepithelial lymphocytes: from tethering to recognizing. Dig Dis Sci 59:520–529

    Article  CAS  PubMed  Google Scholar 

  • Ridley Lathers D, Gill RF, Montgomery PC (1998) Inductive pathways leading to rat tear IgA antibody responses. Invest Ophthalmol Vis Sci 39:1005–1011

    CAS  PubMed  Google Scholar 

  • Rocha B, Vassalli P, Guy-Grand D (1991) The V repertoire of mouse gut homodimeric CD8+ intraepithelial T cell receptor + lymphocytes reveals a major extrathymic pathway of T cell differentiation. J Exp Med 173:483–6

    Article  CAS  PubMed  Google Scholar 

  • Rolstad B (2001) The athymic nude rat: an animal experimental model to reveal novel aspects of innate immune responses? Immunol Rev 184:136–144

    Article  CAS  PubMed  Google Scholar 

  • Ruane D, Chorny A, Lee H, Faith J, Pandey G, Shan M, Simchoni N, Rahman A, Garg A, Weinstain EG, Oropallo M, Gaylord M, Ungaro R, Cunningham-Rundles C, Alexandropoulos K, Mucida D, Merad M, Cerutti A, Mehandru S (2015) Microbiota regulate the ability of lung dendritic cells to induce IgA class-switch recombination and generate protective gastrointestinal immune responses. J Exp Med. doi:10.1084/jem.20150567

    PubMed  Google Scholar 

  • Saitog-Inagawa W, Hiroi T, Yanagita MM, Lijima H, Uchio E, Ohno S, Aoki K, Kiyono H (2000) Unique characteristics of lacrimal glands as part of mucosal immune network: high frequency of IgA-committed B-1 cells and NK1.1(+)alpha beta T cells. Invest Ophthalmol Vis Sci 41:138–144

    Google Scholar 

  • Sagar J, Kumar V, Shah DK (2006) Meckel’s diverticulum: a systematic review. J R Soc Med 99:501–505

    Article  PubMed  PubMed Central  Google Scholar 

  • Salinas I, Zhang Y-A, Sunyer O (2011) Mucosal immunoglobulins and B cells of teleost fish. Dev Comp Immunol 35:1346–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato S, Kiyono H (2012) The mucosal immune system of the respiratory tract. Curr Opin Virol 2:225–232

    Article  CAS  PubMed  Google Scholar 

  • Savidge KA (2016) Epigenetic regulation of enteric neurotransmission by gut bacteria. Front Cell Neurosci. doi:10.3389/fncel.2015.00503

    PubMed  PubMed Central  Google Scholar 

  • Schulte A, Althoff J, Ewe S, Richter-Reichhelm H-B, Bartsch W, Bertheux H, Blot C, Bube A, Burnett R, Dasenbrock C, Descotes G, Bretz F, Emmendörffer A, Ernst H, Gallas JF, Hack R, Halm S, Harleman JH, Hothorn L, Küttier K, Remandet B, Rühl-Fehlert C, Schilling K, Seidel D, Siegnund F, Verdier F, Vohr H-W, Zierz R (2002) Two immunotoxicity ring studies according to OECD TG 407 - Comparison of data on cyclosporin A and hexachlorobenzene. Regul Pharmacol Toxicol 36(1):12–21

    Article  CAS  Google Scholar 

  • Sellin ME, Maslowski KM, Malou KJ, Hardt W-D (2015) Inflammasomes of the intestinal epithelium. Trends Immunol 36:442–450

    Article  CAS  PubMed  Google Scholar 

  • Sepahi A, Salinas I (2016) The evolution of nasal immune systems in vertebrates. Mol Immunol 69:131–138. doi:10.1016/j.molimm.2015.09.008

    Article  CAS  PubMed  Google Scholar 

  • Sheridan BS, Lefrançois L (2012) Isolation of mouse lymphocytes from small intestine tissues. Curr Protoc Immunol. doi: 10.1002/0471142735.im0319s99

  • Siebelman S, Gehlsen U, Huttmann G, Koop N, Bolke T, Gebert A, Stern ME, Niederkorn JY, Steven P (2013) Development, alteration and real time dynamics of conjunctiva-associated lymphoid tissue. PLoS ONE 8(12), e82355. doi:10.1371/journal.pone.0082355

    Article  CAS  Google Scholar 

  • Sminia T, van der Brugge-Gamelkoorn GJ, Jeurissen SHM (1989) Structure and function of bronchus-associated lymphoid tissue (BALT). Crit Rev Immunol 9:119–150

    CAS  PubMed  Google Scholar 

  • Song F, Wardrop RM, Gienapp IE, Stuckman SS, Meyer AL, Shawler T, Whitacre CC (2008) The Peyer’s patch is a critical immunoregulatory site for mucosal tolerance in experimental autoimmune encephalomyelitis (EAE). J Autoimmun 30:230–237

    Article  CAS  PubMed  Google Scholar 

  • Spit BJ, Hendriksen EGJ, Bruijntjes JP, Kuper CF (1989) Nasal lymphoid tissue in the rat. Cell Tissue Res 255:193–198

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H (2009) Differences in intraepithelial lymphocytes in the proximal, middle, distal parts of the small intestine, cecum, and colon of mice. Immunol Invest 38(8):780–796

    Article  CAS  PubMed  Google Scholar 

  • Taylor RT, Williams IR (2005) Lymphoid organogenesis in the intestine. Immunol Res 33:167–181

    Article  CAS  PubMed  Google Scholar 

  • Tilney NL (1971) Patters of lymphatic drainage in the adult laboratory rat. J Anat 109:369–383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tlaskalova-Hogenova H, Stepankova R, Kozakova H, Hudcovic T, Vannucci L, Tuckova L, Rossmann P, Hrncır T, Kverka M, Zakostelska Z, Klimesova K, Pribylova J, Bartova J, Sanchez D, Fundova P, Borovska D, Srutkova D, Zıdek Z, Schwarzer M, Drastich P, Funda DP (2011) The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol 8(2):110–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi PJ, Adams DH (2013) Mucosal immunity in liver autoimmunity: a comprehensive review. J Autoimmun 46:97–111

    Article  CAS  PubMed  Google Scholar 

  • Turnbull JL, Adams HN, Gorard DA (2015) Review article: the diagnosis and management of food allergy and food intolerances. Aliment Pharmacol Ther 41(1):3–25

    Article  CAS  PubMed  Google Scholar 

  • Vaishnava S (2016) The intestinal mucus layer comes of age. Trends Immunol 37:3–4

    Article  CAS  PubMed  Google Scholar 

  • Valdes-Ramos R, Martinez-Carrillo BE, Aranda-Gonzalez II, Guadarrama AL, Pardo-Morales RV, Tlatempa P, Jarillo-Luma RA (2010) Role of physical activity on immune function, diet, exercise and gut mucosal immunity. Proc Nutr Soc 69:644–650

    Article  CAS  PubMed  Google Scholar 

  • Van den Abbeele P, Van de Wiele T, Verstraeten W, Possemiers S (2011) The host selects mucosal and luminal associations of coevolved gut microorganisms: a novel concept. FEMS Microbiol Rev 35:681–704

    Article  PubMed  CAS  Google Scholar 

  • Van der Brugge-Gamelkoorn J, Van de Ende MB, Sminia T (1985) Nonlymphoid cells of bronchus-associated lymphoid tissue of the rat in situ and in suspension. Cell Tissue Res 239:177–182

    Article  PubMed  Google Scholar 

  • Van der Ven I, Sminia T (1993) The development and structure of mouse nasal-associated lymphoid tissue: an immuno- and enzyme-histochemical study. Reg Immunol 5(2):69–75

    PubMed  Google Scholar 

  • Vaughan AT, Gorringe A, Davenport V, Williams NA, Heyderman RS (2009) Absence of mucosal immunity in the human upper respiratory tract to the commensal bacteria Neisseria lactamica but not pathogenic Neisseria meningitides during the peak age of nasopharyngeal carriage. J Immunol. doi:10.4049/jimmunol.0802531

    PubMed  Google Scholar 

  • Velazquez P, Wei B, PcPherson M, Mendoza LMA, Nguyen SL, Turovskaya O, Kronenberg M, Huang TT, Schrage M, Lobato LN, Fujiwara D, Brewer S, Arditi M, Cheng G, Sartor RB, Newberry RD, Braun J (2008) Villous B cells of the small intestine are specialized for invariant NK T cell dependence. J Immunol 180:4629–4638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vermijlen D, Prinz I (2014) Ontogeny of innate T lymphocytes – some innate lymphocytes are more innate than others. Front Immunol 5:∎. doi:10.3389/fimmu.2014.00486

    Article  CAS  Google Scholar 

  • Vinke JG, Fokkens WJ (1999) The role of the adenoid in allergic sensitization. Int J Pediatr Otorhinolargyngol 49:S145–S149

    Article  Google Scholar 

  • Vulchanova L, Casey MA, Crabb GW, Kennedy WR, Brown DR (2007) Anatomical evidence for enteric neuroimmune interactions in Peyer’s patches. J Neuroimmunol 185:64–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wands JM, Roark CL, Aydintug MK, Jin N, Hahn Y-S, Cook L, Yin X, Dal Porto J, Lahn M, Hyde DM, Gelfand EW, Mason RJ, O’Brien RL, Born WK (2005) Distribution and leukocyte contacts of γδ T cells in the lung. J Leukoc Biol 78:1086–1096

    Article  CAS  PubMed  Google Scholar 

  • Wang H-L, Zhang T-E, Yin L-T, Pang M, Guan L, Liu H-L, Zhang J-H, Meng X-L, Bai J-Z, Zheng G-P, Yin G-R (2014) Partial protective effect of intranasal immunization with recombinant toxoplasma gondii rhoptry protein 17 against toxoplasmosis in mice. PLoS One 9:1–8. doi:10.1371/journal.pone.0108377

    Google Scholar 

  • Wu H-Y, Russell MW (1997) Nasal lymphoid tissue, intranasal immunization, and compartmentalization of the common mucosal immune system. Immun Res 16(2):187–201

    Article  CAS  Google Scholar 

  • Xiao BG, Link H (1997) Mucosal tolerance: a two-edged sword to prevent and treat autoimmune diseases. Clin Immunol Immunother 122:119–128

    Article  Google Scholar 

  • Yasuda M, Jenne CN, Kennedy LJ, Reynolds JD (2006) The sheep and cattle Peyer’s patch as a site of B-cell development. Vet Res 37:401–15

    Article  CAS  PubMed  Google Scholar 

  • Zeiser R, Marks R, Bertz H, Finke J (2004) Immunopathogenesis of acute graft-versus-host disease: implications for novel preventive and therapeutic strategies. Ann Hematol 83:551–565

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Frieke Kuper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kuper, C.F., Wijnands, M.V.W., Zander, S.A.L. (2017). Mucosa-Associated Lymphoid Tissues. In: Parker, G. (eds) Immunopathology in Toxicology and Drug Development. Molecular and Integrative Toxicology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-47385-7_4

Download citation

Publish with us

Policies and ethics