Skip to main content

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

The spleen, the largest secondary lymphoid organ in the body, functions both as a blood filter and part of the immune system. Histologically, the spleen is comprised of three main components; the red pulp, the white pulp and the marginal zone. The primary functions of the spleen are largely localized to specific anatomic compartments. The splenic red pulp serves as a blood filter to remove effete erythrocytes and platelets from the blood. Red pulp macrophages also have a role in combating blood-borne infection. The white pulp and marginal zone are the primary sites of innate and adaptive immune responses. The marginal zone is at the interface of red and white pulp, and has a predominance of macrophages, dendritic cells, and B cells that play an important role in innate immunity as well as the capture and presentation of antigens to initiate the adaptive immune response. Abundant lymphocytes in the white pulp are distributed into T cell-rich peri-arteriolar lymphoid sheaths and B cell-rich follicles, which work cooperatively to develop adaptive immune responses. A complex interplay between innate and adaptive immune cells and mediators makes the spleen important in the development of effective immune responses, particularly against circulating pathogens. In performing histological and functional evaluations, it is important to consider the wide range of responses in the spleen as well as differences in responses and background findings that can occur in animals of different species, strains, ages, or physiological states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aichele P, Zinke J, Grode L, Schwendener RA, Kaufmann SH, Seiler P (2003) Macrophages of the splenic marginal zone are essential for trapping of blood-borne particulate antigen but dispensable for induction of specific T cell responses. J Immunol 171(3):1148–1155

    Article  CAS  PubMed  Google Scholar 

  • Altamura M, Caradonna L, Amati L, Pellegrino NM, Urgesi G, Miniello S (2001) Splenectomy and sepsis: the role of the spleen in the immune-mediated bacterial clearance. Immunopharmacol Immunotoxicol 23(2):153–161

    Article  CAS  PubMed  Google Scholar 

  • Bacha W, Bacha L (2000) Color atlas of veterinary histology. Lippincott, Williams, and Wilkins, Philadelphia

    Google Scholar 

  • Banks WJ (1993) Applied veterinary histology, 3rd edn. Mosby-Year Book, St. Louis

    Google Scholar 

  • Blue J, Weiss L (1981) Electron microscopy of the red pulp of the dog spleen including vascular arrangements, periarterial macrophage sheaths (ellipsoids), and the contractile, innervated reticular meshwork. Am J Anat 161(2):189–218, http://www.ncbi.nlm.nih.gov/pubmed/7258115

    Article  CAS  PubMed  Google Scholar 

  • Borges da Silva H, Fonseca R, Pereira RM, Cassado Ados A, Alvarez JM, D'Imperio Lima MR (2015) Splenic macrophage subsets and their function during blood borne infections. Front Immunol 6:1–9. doi:10.3389/fimmu.2015.00480

    Article  Google Scholar 

  • Bradley AE (2012) New Zealand white rabbit. In: McInnes EF (ed) Background lesions in laboratory animals: a color atlas. Saunders/Elsevier, Edinburgh, pp 87–92

    Chapter  Google Scholar 

  • Brendolan A, Rosado MM, Carsetti R, Selleri L, Dear TN (2007) Development and function of the mammalian spleen. Bioessays 29(2):166–177. doi:10.1002/bies.20528

    Article  CAS  PubMed  Google Scholar 

  • Brown EM, Dellmann HD (1981) Lymphatic organs. In: Brown EM, Dellmann HD (eds) Textbook of veterinary histology, 2nd edn. Lea and Febiger, Philadelphia, pp 165–186

    Google Scholar 

  • Cesta MF (2006) Normal structure, function, and histology of the spleen. Toxicol Pathol 34(5):455–465. doi:10.1080/01926230600867743

    Article  PubMed  Google Scholar 

  • Chadburn A (2000) The spleen: anatomy and anatomical function. Semin Hematol 37(1 Suppl 1):13–21

    Article  CAS  PubMed  Google Scholar 

  • Chamanza R, Marxfeld HA, Blanco AI, Naylor SW, Bradley AE (2010) Incidences and range of spontaneous findings in control cynomolgus monkeys (Macaca fasciularis) used in toxicity studies. Toxicol Pathol 38:642–657

    Article  PubMed  Google Scholar 

  • De Jong WH, Van Loveren H (2007) Screening of xenobiotics for direct immunotoxicity in an animal study. Methods 41(1):3–8. doi:10.1016/j.ymeth.2006.09.003

    Article  PubMed  Google Scholar 

  • den Haan JMM, Kraal G (2012) Innate immune functions of macrophage subpopulations in the spleen. J Innate Immun 4(5-6):437–445. doi:10.1159/000335216

    Article  Google Scholar 

  • Descotes J (2006) Methods of evaluating immunotoxicity. Expert Opin Drug Metab Toxicol 2(2):249–259

    Article  CAS  PubMed  Google Scholar 

  • Dhabhar FS (2009) Enhancing versus suppressive effects of stress on immune function: implications for immunoprotection and immunopathology. Neuroimmunomodulation 16(5):300–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhabhar FS, Miller AH, McEwen BS, Spencer RL (1995) Effects of stress on immune cell distribution. Dynamics an hormonal mechansisms. J Immunol 154(10):5511–5527

    CAS  PubMed  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmore SA (2006) Enhanced histopathology of the spleen. Toxicol Pathol 34:648–655

    Article  PubMed  PubMed Central  Google Scholar 

  • Everds NE, Snyder PW, Bailey KL, Bolon B, Creasy DM, Foley GL, Rosol TJ, Sellers T (2013) Interpreting stress responses during routine toxicity studies: a review of the biology, impact, and assessment. Toxicol Pathol 41(4):560–614. doi:10.1177/0192623312466452

    Article  PubMed  Google Scholar 

  • Frith CH, Ward JM, Chandra M, Losco PE (2000) Non-proliferative lesions of the hematopoietic system in rats. HL-1. In: Guides for toxicologic pathology. STP/ARP/AFIP, Washington, DC. https://www.toxpath.org/ssdnc/HematopoieticNonprolifRat.pdf

  • Germolec DR, Nyska A, Kashon M, Kuper CF, Portier C, Kommineni C, Johnson KA, Luster MI (2004) Extended histopathology in immunotoxicity testing: interlaboratory validation studies. Toxicol Sci 78(1):107–115

    Article  CAS  PubMed  Google Scholar 

  • Golub R, Cumano A (2013) Embryonic hematopoiesis. Blood Cells Mol Dis 51(4):226–231. doi:10.1016/j.bcmd.2013.08.004, S1079-9796(13)00201-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Gopinath C (1996) Pathology of toxic effects on the immune system. Inflamm Res 45(Suppl 2):S74–S78

    CAS  PubMed  Google Scholar 

  • Haley P, Perry R, Ennulat D, Frame S, Johnson C, Lapointe JM, Nyska A, Snyder PW, Walker D, Walter G (2005) STP position paper: best practice guideline for the routine pathology evaluation of the immune system. Toxicol Pathol 33:404–407

    Article  CAS  PubMed  Google Scholar 

  • Harleman JH (2000) Approaches to the identification and recording of findings in the lymphreticular organs indicative for immunotoxicity in regulatory type toxicity studies. Toxicology 142:213–219

    Article  CAS  PubMed  Google Scholar 

  • Hobbie K, Elmore SA, Kolenda-Roberts HM (2015) Immune system – Spleen. In: Cesta MF, Herbert RA, Brix A, Malarkey DE, Sills RC (eds) National Toxicology Program Nonneoplastic Lesion Atlas. http://ntp.niehs.nih.gov/nnl/immune/spleen/index.htm

  • HogenEsch H, Hahn FF (2001) The lymphoid organs: anatomy, development, and age-related changes. Pathobiology of the aging dog, vol 1. pp 127–135. doi: Book chapter

    Google Scholar 

  • Jones JF (1983) Development of the spleen. Lymphology 16(2):83–89

    CAS  PubMed  Google Scholar 

  • Kerlin R, Bolon B, Burkhardt J, Francke S, Greaves P, Meador V, Popp J (2016) Scientific and regulatory policy committee: Recommended ("best") practices for determining, communicating, and using adverse effect data from nonclinical studies. Toxicol Pathol 44(2):147–162

    Article  PubMed  Google Scholar 

  • Kodama R, Okazaki T, Sato T, Iwashige S, Tanigawa Y, Fujishima J, Moriyama A, Yamashita N, Sasaki Y, Yoshikawa Y, Maeda H (2012) Age difference in morophology and immunohistology in the thymus and spleen in Crl:CD (SD) rats. J Toxicol Pathol 25(1):55–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Koppel EA, Litjens M, van den Berg VC, van Kooyk Y, Geijtenbeek TBH (2008) Interaction of SIGNR1 expressed by marginal zone macrophages with marginal zone B cells is essential to early IgM responses against Streptococcus pneumoniae. Mol Immunol 45:2881–2887

    Article  CAS  PubMed  Google Scholar 

  • Korolnek T, Hamza I (2015) Macrophages and iron trafficking at the birth and death of red cells. Blood 125(19):2893–2897. doi:10.1182/blood-2014-12-567776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraal G, Mebius RE (2006) New insights into the cell biology of the marginal zone of the spleen. Int Rev Cytol 250:175–215. doi:10.1016/S0074-7696(06)50005-1

    Article  CAS  PubMed  Google Scholar 

  • Kroese FG, Butcher EC, Stall AM, Herzenberg LA (1989) A major peritoneal reservior of precursors for intestinal IgA plasma cells. Immunol Invest 18:47–58

    Article  CAS  PubMed  Google Scholar 

  • Kuper CF, Ruehl-Fehlert C, Elmore SA, Parker GA (2013) In: Haschek WM, Rousseaux CG, Wallig MA (eds) Immune system in handbook of toxicologic pathology. Academic Press/Elsevier, Waltham, MA, pp 1795–1859

    Google Scholar 

  • Kuper CF, Harleman JH, Richter-Reichelm HB, Vos JG (2000) Histopathologic approaches to detect changes indicative of immunotoxicity. Toxicol Pathol 28:454–466

    Article  CAS  PubMed  Google Scholar 

  • Lockmic Z, Lammermann T, Sixt M, Cardell S, Hallmann R, Sorokin L (2008) The extracellular matrix of the spleen as a potential organizer of immune cell compartments. Semin Immunol 20:4–13. doi:10.1016/j.smim.2007.12.009

    Article  Google Scholar 

  • Lopes-Carvalho T, Foote J, Kearney JF (2005) Marginal zone B cells in lymphocyte activation and regulation. Curr Opin Immunol 17:244–250

    Article  CAS  PubMed  Google Scholar 

  • Losco P (1992) Normal development, growth, and aging of the spleen. In: Mohr U, Dungworth DL, Capen CC (eds) Pathobiology of the aging rat, 1st edn. ILSI, Washington, DC, pp 75–94

    Google Scholar 

  • Luster MI, Portier C, Pait DG, White KLJ, Gennings C, Munson AE, Rosenthal GJ (1992) Risk assessment in immunotoxicology.I. Sensitivity and predictabiligy of immune tests. Fundam Appl Toxicol 18(2):200–210

    Article  CAS  PubMed  Google Scholar 

  • Mahnke K, Knop J, Enk AH (2003) Induction of tolerogenic DCs: “you are what you eat”. Trends Immunol 24(1):646–651

    Article  CAS  PubMed  Google Scholar 

  • Matsuno K, Ezaki T, Kotani M (1989) Splenic outer periarterial lymphoid sheath (PALS): An immunoproliferative microenvironment constituted by antigen-laden marginal metallophils and ED2-positive macrophages in the rat. Cell Tissue Res 257(3):459–470, http://www.ncbi.nlm.nih.gov/pubmed/2790931

    Article  CAS  PubMed  Google Scholar 

  • McInnes EF (2012a) Minipigs. In: McInnes EF (ed) Background lesions in laboratory animals: a color atlas. Saunders/Elsevier, Edinburgh, pp 81–86

    Chapter  Google Scholar 

  • McInnes EF (2012b) Wistar and Sprague-Dawley rats. In: McInnes EF (ed) Background lesions in laboratory animals: a color atlas. Saunders/Elsevier, Edinburgh, pp 17–36

    Chapter  Google Scholar 

  • Mebius RE, Kraal G (2005) Structure and function of the spleen. Nat Rev Immunol 5(8):606–616, http://dx.doi.org/10.1038/nri1669

    Article  CAS  PubMed  Google Scholar 

  • Mebius RE, Nolte MA, Kraal G (2004) Development and function of the splenic marginal zone. Crit Rev Immunol 24(6):449–464

    Article  PubMed  Google Scholar 

  • Michael B, Yano B, Sellers RS, Perry R, Morton D, Roome N, Johnson JK, Schafer K, Pitsch S (2007) Evaluation of organ weights for rodent and non-rodent toxicity studies: a review of regulatory guidelines and a survey of current practices. Toxicol Pathol 35(5):742–750

    Article  PubMed  Google Scholar 

  • Morelli AE, Larregina AT, Shufesky WJ, Zahorchak AF, Logar AJ, Papworth GD, Wang Z, Watkins SC, Falo LDJ, Thomson AW (2003) Internalization of circulating apoptotic cells by splenic marginal zone dendritic cells: dependence on complement receptors and effect on cytokine production. Blood 101(2):611–620

    Article  CAS  PubMed  Google Scholar 

  • Nance DW, Sanders BM (2007) Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav Immun 21(6):736–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onkar DP, Govardhan SA (2013) Comparative histology of human and dog spleen. J Morphol Sci 30(1):16–20

    Google Scholar 

  • Parker GA, Picut CA, Swanson C, Toot JD (2015) Histologic features of postnatal development of immune system organs in the Sprague-Dawley rat. Toxicol Pathol 43(6):794–815

    Article  CAS  PubMed  Google Scholar 

  • Perryman LE (2004) Molecular pathology of severe combined immunodeficiency in mice, horses, and dogs. Vet Pathol 41(2):95–100, http://dx.doi.org/10.1354/vp.41-2-95

    Article  CAS  PubMed  Google Scholar 

  • Press CM, Landsverk T (2006) Immune System. In: Eurell JA, Frappier BL (eds) Dellman’s Textbook of veterinary histology, 6th edn. Blackwell, Ames, pp 134–152

    Google Scholar 

  • Pruett S, Hebert P, Lapointe JM, Reagan W, Lawton M, Kawabata TT (2007) Characterization of the action of drug-induced stress responses on the imune system: evaluation of biomarkers for drug-induced stress in rats. J Immunotoxicol 4(1):25–38

    Article  CAS  PubMed  Google Scholar 

  • Ram S, Lewis LA, Rice PA (2010) Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin Microbiol Rev 23(4):740–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosado MM, Gesualdo F, Marcellini V, Di Sabatino A, Corazza GR, Smacchia MP, Nobili B, Baronci C, Russo L, Rossi F, Vito RD, Nicolosi L, Inserra A, Locatelli F, Tozzi AE, Carsetti R (2013) Preserved antibody levels and loss of memory B cells against pneumococcus and tetanus after splenectomy: tailoring better vaccination strategies. Eur J Immunol 43(10):2659–2670

    Article  CAS  PubMed  Google Scholar 

  • Saint-Mezard P, Chavagnac C, Bosset S, Ionescu M, Peyron E, Kaiserlian D, Nicolas JF, Berard FJ (2003) Psychological stress exerts an adjuvant effect on skin dendritic cell functions in vivo. J Immunol 171(8):4073–4080

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Yokoi Y, Watanabe S, Tajima J, Kuroda H, Namihisa T (1988) Reticular meshwork of the spleen in rats studied by electron microscopy. Am J Anat 181(3):235–252, http://www.ncbi.nlm.nih.gov/pubmed/3364383

    Article  CAS  PubMed  Google Scholar 

  • Sato J, Doi T, Kanno T, Wako Y, Tsuchitani M, Narama I (2012) Histopathology of incidental findings in cynomolgus monkeys (Macaca fascicularis) used in toxicity studies. J Toxicol Pathol 25(1):63–101

    Article  PubMed  PubMed Central  Google Scholar 

  • Satodate R, Tanaka H, Sasou S, Sakuma T, Kaizuka H (1986) Scanning electron microscopical studies of the arterial terminals in the red pulp of the rat spleen. Anat Rec 215(3):214–216, http://www.ncbi.nlm.nih.gov/pubmed/3740462

    Article  CAS  PubMed  Google Scholar 

  • Schmidt EE, MacDonald IC, Groom AC (1982) Direct arteriovenous connections and the intermediate circulation in dog spleen, studied by scanning electron microscopy of microcorrosion casts. Cell Tissue Res 225(3):543–555, http://www.ncbi.nlm.nih.gov/pubmed/7127407

    Article  CAS  PubMed  Google Scholar 

  • Schmidt EE, MacDonald IC, Groom AC (1983) Circulatory pathways in the sinusal spleen of the dog, studied by scanning electron microscopy of microcorrosion casts. J Morphol 178(2):111–123, http://www.ncbi.nlm.nih.gov/pubmed/6655696

    Article  CAS  PubMed  Google Scholar 

  • Schmidt EE, MacDonald IC, Groom AC (1985) Microcirculation in rat spleen (sinusal), studied by means of corrosion casts, with particular reference to the intermediate pathways. J Morphol 186(1):1–16, http://onlinelibrary.wiley.com/doi/10.1002/jmor.1051860102/abstract

    Article  Google Scholar 

  • Scudamore C (2012) Beagle Dog. In: McInnes EF (ed) Background lesions in laboratory animals: a color atlas. Saunders/Elsevier, Edinburgh, pp 37–44

    Chapter  Google Scholar 

  • Seymour R, Sundberg JP, Hogenesch H (2006) Abnormal lymphoid organ development in immunodeficient mutant mice. Vet Pathol 43(4):401–423. doi:10.1354/vp.43-4-401

    Article  CAS  PubMed  Google Scholar 

  • Stefanski SA, Elwell MR, Stromberg PC (1990) Spleen, lymph nodes, and thymus. Pathology of the Fischer rat. pp 369-393. doi: Book chapter

    Google Scholar 

  • Suttie AW (2006) Histopathology of the spleen. Toxicol Pathol 34(5):466–503. doi:10.1080/01926230600867750

    Article  PubMed  Google Scholar 

  • Taylor I (2012) Mouse. In: McInnes EF (ed) Background lesions in laboratory animals: a color atlas. Saunders/Elsevier, Edinburgh, pp 45–72

    Chapter  Google Scholar 

  • Thomas J, Haseman JK, Goodman JI, Ward JM, Loughran TPJ, Spencer PJ (2007) A review of large granular lymphocytic leukemia in Fischer 344 rats as an initial step toward evaluating the implication fo the endpoint to human cancer risk. Toxicol Sci 99(1):3–19

    Article  CAS  PubMed  Google Scholar 

  • Ueno H, Banchereau J, Vinuesa CG (2015) Pathophysiology of T follicular helper cells in humans and mice. Nat Immunol 16(2):142–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Rees EP, Sminia T, Dijkstra CD (1996) Structure and development of the lymphoid organs. Pathobiology of the aging mouse, vol 1. pp 173–187. doi: Book chapter

    Google Scholar 

  • Ward JM, Mann PC, Morishima H, Frith CH (1999) Thymus, spleen and lymph nodes. Pathology of the mouse. pp 333–360. doi:Book chapter

    Google Scholar 

  • Wardemann H, Boehm T, Dear N, Carsetti R (2002) B-1a B cells that link the innate and adaptive immune responses are lacking in the absence of the spleen. J Exp Med 195(6):771–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White C, Yuan X, Schmidt PJ, Bresciani E, Samuel TK, Campagna D, Hall C, Bishop K, Calicchio ML, Lapierre A, Ward DM, Liu P, Fleming MD, Hamza I (2013) HRG1 is essential for heme transport from the phagolysosome of macrophages during erythrophagocytosis. Cell Metab 17(2):261–270. doi:10.1016/j.cmet.2013.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracey L. Papenfuss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Papenfuss, T.L., Cesta, M.F. (2017). Spleen. In: Parker, G. (eds) Immunopathology in Toxicology and Drug Development. Molecular and Integrative Toxicology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-47385-7_2

Download citation

Publish with us

Policies and ethics