Skip to main content

Acute Stress Detection Using Recurrence Quantification Analysis of Electroencephalogram (EEG) Signals

  • Conference paper
  • First Online:
Brain Informatics and Health (BIH 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9919))

Included in the following conference series:

Abstract

In the present work we intend to classify the brain states under physical stress and experimental control conditions based on the nonlinear features of electroencephalogram (EEG) dynamics using support vector machine (SVM) and least absolute shrinkage and selection operator (LASSO). Recurrence Quantification Analysis (RQA) method was employed to quantify the nonlinear features of high-density electroencephalogram (EEG) signals recorded either during instances of acute stress induction or comparison conditions. Four RQA measures, including determinism (DET), entropy (ENTR), laminarity (LAM) and trapping time (TT) were extracted from the EEG signals to characterize the deterministic features of cortical activity. Results revealed that LASSO was highly efficient in classifying the conditions using any one of the selected RQA measures, while SVM achieved accurate classification based solely on ENTR and TT. Among all four measures of non-linear dynamics, ENTR yielded the best overall classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharya, U.R., Sree, S.V., Ang, P.C.A., Yanti, R., Suri, J.S.: Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int. J. Neural Syst. 22(02), 1250002 (2012)

    Article  Google Scholar 

  2. Becker, K., Schneider, G., Eder, M., Ranft, A., Kochs, E.F., Zieglgänsberger, W., Dodt, H.U.: Anaesthesia monitoring by recurrence quantification analysis of EEG data. PloS ONE 5(1), e8876 (2010)

    Article  Google Scholar 

  3. Chen, L.L., Zhang, J., Zou, J.Z., Zhao, C.J., Wang, G.S.: A framework on wavelet-based nonlinear features and extreme learning machine for epileptic seizure detection. Biomed. Signal Process. Control 10, 1–10 (2014)

    Article  Google Scholar 

  4. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  5. Eckmann, J.P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamical systems. EPL (Europhys. Lett.) 4(9), 973 (1987)

    Article  Google Scholar 

  6. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Helland, V.C.F., Postnova, S., Schwarz, U., Kurths, J., Kundermann, B., Hemmeter, U., Braun, H.A.: Comparison of different methods for the evaluation of treatment effects from the sleep EEG of patients with major depression. J. Biol. Phys. 34(3–4), 393–404 (2008)

    Article  Google Scholar 

  8. Kennel, M.B., Brown, R., Abarbanel, H.D.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403 (1992)

    Article  Google Scholar 

  9. Koch, C., Laurent, G.: Complexity and the nervous system. Science 284(5411), 96–98 (1999)

    Article  Google Scholar 

  10. Korn, H., Faure, P.: Is there chaos in the brain? II. Experimental evidence and related models. C. R. Biol. 326(9), 787–840 (2003)

    Article  Google Scholar 

  11. Li, X., Sleigh, J.W., Voss, L.J., Ouyang, G.: Measure of the electroencephalographic effects of sevoflurane using recurrence dynamics. Neurosci. Lett. 424(1), 47–50 (2007)

    Article  Google Scholar 

  12. Liang, Z., Wang, Y., Ren, Y., Li, D., Voss, L., Sleigh, J., Li, X.: Detection of burst suppression patterns in EEG using recurrence rate. Sci. World J. 2014, 1–11 (2014)

    Google Scholar 

  13. Marwan, N.: How to avoid potential pitfalls in recurrence plot based data analysis. Int. J. Bifurcat. Chaos 21(04), 1003–1017 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5), 237–329 (2007)

    Article  MathSciNet  Google Scholar 

  15. Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J.: Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Phys. Rev. E 66(2), 026702 (2002)

    Article  MATH  Google Scholar 

  16. Murali, L., Chitra, D., Manigandan, T., Sharanya, B.: An efficient adaptive filter architecture for improving the seizure detection in EEG signal. Circuits Syst. Signal Process. 35, 1–18 (2015)

    Google Scholar 

  17. Pereira, F., Mitchell, T., Botvinick, M.: Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45(1), S199–S209 (2009)

    Article  Google Scholar 

  18. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)

    Article  MathSciNet  Google Scholar 

  19. Stam, C.J.: Chaos, continuous EEG, and cognitive mechanisms: a future for clinical neurophysiology. Am. J. Electroneurodiagn. Technol. 43(4), 211–227 (2003)

    Google Scholar 

  20. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc.: Ser. B (Methodol.) 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  21. Webber, C.L., Zbilut, J.P.: Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76(2), 965–973 (1994)

    Google Scholar 

  22. Webber Jr., C.L., Zbilut, J.P.: Recurrence quantification analysis of nonlinear dynamical systems. In: Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences, pp. 26–94 (2005)

    Google Scholar 

  23. Zbilut, J.P., Webber, C.L.: Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171(3), 199–203 (1992)

    Article  Google Scholar 

  24. Zbilut, J.P., Zaldivar-Comenges, J.M., Strozzi, F.: Recurrence quantification based Liapunov exponents for monitoring divergence in experimental data. Phys. Lett. A 297(3), 173–181 (2002)

    Article  MATH  Google Scholar 

Download references

Acknowledgment

This research is made possible through the funding from the National Science Foundation (grant number CMMI - 1538059), and the Transdisciplinary Area of Excellence (TAE) exploratory research grant provided by State University of New York, Binghamton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaolin Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Fan, M., Tootooni, M.S., Sivasubramony, R.S., Miskovic, V., Rao, P.K., Chou, CA. (2016). Acute Stress Detection Using Recurrence Quantification Analysis of Electroencephalogram (EEG) Signals. In: Ascoli, G., Hawrylycz, M., Ali, H., Khazanchi, D., Shi, Y. (eds) Brain Informatics and Health. BIH 2016. Lecture Notes in Computer Science(), vol 9919. Springer, Cham. https://doi.org/10.1007/978-3-319-47103-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47103-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47102-0

  • Online ISBN: 978-3-319-47103-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics