Skip to main content

Vulnerabilities, Threats and Gaps in Food Biosecurity

  • Chapter
  • First Online:
Practical Tools for Plant and Food Biosecurity

Abstract

The food production system throughout the European Union, which includes farm production, harvesting, transport, processing, storage, marketing and consumption, is vast, complex and open. The high volume of trade in fresh vegetables and fruits contributes to the vulnerability to contamination, whether by accident or intent. Outbreak investigation is critical to understanding the sources of contamination and the steps required to minimize it. The fact that much of the trade in these commodities is international makes it critical that mediation efforts and cooperative research cross national barriers, just as the pathogens do. Enhancing the biosecurity of food production requires assessment of the following: how is the food production system currently organized, in what ways might it be vulnerable to contamination, either accidental or deliberate, what are the primary factors that would allow discrimination between deliberate vs. accidental outbreaks, how can the epidemiological and surveillance systems in Europe be strengthened to shorten outbreak response and mediation times, how can implicated fresh produce be traced to its source, and what forensically valid subtyping method(s) is/are available for detection and discrimination of associated foodborne pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abramovitch RB, Anderson JC, Martin GB (2006) Bacterial elicitation and evasion of plant innate immunity. Nat Rev Mol Cell Biol 7:601–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrios G (1988) Plant pathology. Academic Press, Inc., San Diego

    Google Scholar 

  • Allard MW, Luo Y, Strain E, Pettingill J, Timme R, Wang C, Li C, Keys CE, Zheng J, Tones R, Wilson MR, Musser SM, Brown EW (2013) On the evolutionary history, population genetics and diversity among isolates of Salmonella Enteritidis PFGE pattern JEGX01.0004. PLoS One 8:e55254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alpas H, Soyer Y, Kiymaz T, Yeni F, Polat OG, Gunel E (2012) Review of extraction methods from exemplar food matrices and the analytical methods available for microbial or toxin contamination identification. Deliverable D 2.25, PLANTFOODSEC, EU Network of Excellence in Security

    Google Scholar 

  • Aruscavage D, Phelan PL, Lee K, LeJeune JT (2010) Impact of changes in sugar exudate created by biological damage to tomato plants on the persistence of Escherichia coli O157:H7. J Food Sci 75:187–192

    Article  Google Scholar 

  • Barak J (2004) Biofilms and other strategies exploited by salmonella and friends on plants. Phytopathology 94:S128–S128

    Google Scholar 

  • Barak JD, Kramer LC, Hao LY (2011) Colonization of tomato plants by Salmonella enterica is cultivar dependent, and type 1 trichomes are preferred colonization sites. Appl Environ Microbiol 77:498–504. doi:10.1128/AEM.01661-10

    Article  CAS  PubMed  Google Scholar 

  • Bartels C, Beaute J, Fraser G, De Jong B, Martinez Urtaza J, Nichols G, Niskanen T, Palm D, Robeysn E, Severi E, Tavoschi L, Santos CV, Van Walle I, Warns-Petit E, Wetrell T, Whittaker R (2014) European centre for disease prevention and control. Annual epidemiological report – food- and waterborne diseases and zoonoses. ECDC, Stockholm

    Google Scholar 

  • Bennett JK (2003) Mycotoxins Clin Microbiol Rev 16:497–516

    Article  CAS  PubMed  Google Scholar 

  • Berger CS (2010) Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ Microbiol 12:2385–2397

    Article  PubMed  Google Scholar 

  • Brandl MT (2006) Fitness of human enteric pathogens on plants and implications for food safety. Annu Rev Phytopathol 44:367–392. doi:10.1146/annurev.phyto.44.070505.143359

    Article  CAS  PubMed  Google Scholar 

  • Brandl MT (2008) Plant lesions promote the rapid multipication of Escherichia coli O157:H7 on postharvest lettuce. Appl Environ Microbiol 74:5285–5289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchholz U, Bernard H, Werber D, Bohmer MM, Remschmidt C, Wilking H, Delere Y, an der Heiden M, Adlhoch C, Dreesman J, Ehlers J, Ethelberg S, Faber M, Frank C, Fricke G, Greiner M, Hohle M, Ivarsson S, Jark U, Kirchner M, Koch J, Krause G, Luber P, Rosner B, Stark K, Kuhne M (2011) German outbreak of Escherichia coli O104:H4 associated with sprouts. N Engl J Med 365:1764–1770

    Article  Google Scholar 

  • Carlin F (2007) Fruits and vegetables. In: Doyle MP, Beuchat LR (eds) Food microbiology: fundamentals and frontiers, 3rd edn. ASM Press, Washington, DC, pp 157–170

    Chapter  Google Scholar 

  • CDC (2012) Multistate outbreak of listeriosis linked to whole cantaloupes from Jensen Farms, Colorado. Centers for Disease Control and Prevention

    Google Scholar 

  • CDC (2013) Pulsed Field Gel Electrophoresis (PFGE) [Online]. http://www.cdc.gov/pulsenet/pathogens/pfge.html. Accessed 23 Mar 2013

  • CDC (2014) Multistate outbreak of Salmonella Braenderup infections linked to nut butter manufactured by nSpired Natural Foods, Inc. (Final Update) [Online]. Available: http://www.cdc.gov/salmonella/braenderup-08-14/index.html. Accessed 20 Mar 2015

  • Chitarra W, DeCastelli L, Garibaldi A, Gullino ML (2014) Potential uptake of Escherichia coli O157:H7 and Listeria monocytogenes from growth substrate into leaves of salad plants and basil grown in soil irrigated with contaminated water. Int J Food Microbiol 189:139–145

    Article  PubMed  Google Scholar 

  • CBS News (2013) Feds charge Jensen Farms over 2011 listeria-cantaloupe outbreak. CBS News

    Google Scholar 

  • Doyle MP, Erickson MC (2012) Opportunities for mitigating pathogen contamination during on-farm food production. Int J Food Microbiol 152:54–74

    Article  PubMed  Google Scholar 

  • Drusch SR (2003) Mycotoxins in fruits, fruit juices, and dried fruits. J Food Prot 66:1514–1527

    Article  CAS  PubMed  Google Scholar 

  • EFSA (2014) Use of whole genome sequencing (WGS) of food-borne pathogens for public health protection. EFSA Scientific Colloquium Summary Report, Parma, EFSA

    Google Scholar 

  • Erickson M (2012) Internalization of fresh produce by foodborne pathogens. Annu Rev Food Sci Technol 3:283–310

    Article  CAS  PubMed  Google Scholar 

  • European Centre for Disease Prevention and Control (2011a) Reporting on 2009 surveillance data and 2010 epidemic intelligence data. Annual Epidemiological Report. ISBN 978-92-9193-321-1

    Google Scholar 

  • European Centre for Disease Prevention and Control (2011b) Understanding the 2011 EHEC/STEC outbreak in Germany. ECDC Director’s Presentation, ICAAC conference, 17 September, 2011, Chicago, IL, USA. http://ecdc.europa.eu/en/aboutus/organisation/Director%20Speeches/201109_MarcSprenger_STEC_ICAAC.pdf

  • European Food Safety Authority (2010) Scientific colloquium on emerging risks in food: from identification to communication. Summary Rept. 15. Parma, Italy

    Google Scholar 

  • European Food Safety Authority (2011) Annual Report. 2011ISBN: 978-92-9199-424-3. 2012

    Google Scholar 

  • FDA (2014) FDA investigates presence of Listeria in some Hispanic-style cheeses [Online]. HYPERLINK http://www.fda.gov/Food/RecallsOutbreaksEmergencies/Outbreaks/ucm386726.htm http://www.fda.gov/Food/RecallsOutbreaksEmergencies/Outbreaks/ucm386726.htm. Accessed 20 Mar 2015

  • Felix B, Danan C, Van Walle I, Lailler R, Texier T, Lombard B, Brisabois A, Roussel S (2014) Building a molecular Listeria monocytogenes database to centralize and share PFGE typing data from food, environmental and animal strains throughout Europe. J Microb Methods 104:1–8

    Article  Google Scholar 

  • Fletcher J, Leach JE, Eversole K, Tauxe R (2013) Human pathogens on plants: designing a multidisciplinary strategy for research. Phytopathology 103:306–315

    Article  PubMed  Google Scholar 

  • Flynn D (2006) Salmonella bioterrorism: 25 years later. Food Safety News. http://www.foodsafetynews.com/2009/10/for-the-first-12/#.Vo89UFq5f4E

  • Forsythe S (2010) The microbiology of safe food, 2nd edn. Wiley, Oxford

    Google Scholar 

  • Francischini S (2013) Report on detection systems for mycotoxins in food. Deliverable D4.36, PLANTFOODSEC, EU Network of Excellence in Security

    Google Scholar 

  • Gamliel A, Dehne HW, Karlovsky P, Fletcher J (2015) Minimum required performance of mycotoxin analysis for applications in a biosecurity context. Deliverable D 2.53, PLANTFOODSEC, EU Network of Excellence in Security

    Google Scholar 

  • GMI (2014) Report of the 7th global microbial identifier meeting. FERA, York, United Kingdom. http://www.globalmicrobialidentifier.org/News-and-Events/Previous-meetings/7th-Meeting-on-GMI

  • Goodburn CW (2013) The microbiological efficacy of decontamination methodologies for fresh produce: a review. Food Control 32:418–427

    Article  CAS  Google Scholar 

  • Gorman R, Adley CC (2004) Characterization of Salmonella enterica serotype typhimurium isolates from human, food, and animal sources in the Republic of Ireland. J Clin Microbiol 42:2314–2316

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorny J (2006) Microbial contamination of fresh fruits and vegetables. In: Sapers GM, Gorny JR, Yousef AE (eds) Microbiology of fruits and vegetables. CRC Press, Boca Raton

    Google Scholar 

  • Gunel E, Polat Kilic G, Bulut E, Durul B, Acar S, Alpas H, Soyer Y (2015) Salmonella surveillance on fresh produce in retail in Turkey. Int J Food Microbiol 199:72–77

    Article  PubMed  Google Scholar 

  • Hancock D, Besser T, Rice D (1998) Ecology of Escherichia coli O157:H7 in cattle and impact of management practices. In: Kaper J, O’Brien A (eds) Escherichia coli O157:H7 and other Shiga toxin-producing E. coli strains. ASM Press, Washington, DC, pp 85–91

    Google Scholar 

  • Hansstein FV (2014) Consumer knowledge and attitudes towards food traceability: a comparison between the European Union, China and North America. 2014 International conference on food security and nutrition IPCBEE vol.67 (2014) © (2014) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2014. V67. 22

  • Hao LY, Willis DK, Andrews-Polymenis H, McClelland M, Barak JD (2012) Requirement of siderophore biosynthesis for plant colonization by Salmonella enterica. Appl Environ Microbiol 78:4561–4570. doi:10.1128/AEM.07867-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris LF (2003) Outbreaks associated with fresh produce: incidence, growth and survival of pathogens in fresh and fresh-cut produce. Compr Rev Food Sci Food Saf 2:141

    Article  Google Scholar 

  • Harris A, Henry C, Quill E, Robb P (2012) Prioritisation of human pathogens on plants in European Union countries. FERA, York

    Google Scholar 

  • Health Protection (Notification) Regulations (2010) United Kingdom

    Google Scholar 

  • Ingle RA, Carstens M, Denby KJ (2006) PAMP recognition and the plant-pathogen arms race. BioEssays 28:880–889

    Article  CAS  PubMed  Google Scholar 

  • Jay JM, Loessner MJ, Golden DA (2005) Modern food microbiology, 7th edn. Springer, New York

    Google Scholar 

  • Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM (2014) Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52:1501–1510

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson EA (2007) Clostridium botulinum. In: Doyle MP, Beuchat LR (eds) Food microbiology: fundamentals and frontiers, 3rd edn. ASM Press, Washington, DC

    Google Scholar 

  • Jolley KA, Maiden MCJ (2010) BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinf 11:595

    Article  Google Scholar 

  • Knutsson R, van Rotterdam B, Fach P, De Medici D, Frisker M, Löfström C, Ågren J, Segerman G, Wielenga P, Fenicia L, Skiby J, Schultz AC, Ehling-Schulz M (2011) Accidental and deliberate microbiological contamination in feed and food chains – how biotraceability may improve response to bioterrorism. Int J Food Microbiol 145:5123–5128

    Google Scholar 

  • Lampel K (2007) Shigella species. In: Doyle MP, Beuchat LR (eds) Food microbiology: fundamentals and frontiers, 3rd edn. ASM Press, Washington, DC

    Google Scholar 

  • Lapidot A, Yaron S (2009) Transfer of Salmonella enterica serovar Typhimurium from contaminated irrigation water to parsley is dependent on curli and cellulose, the biofilm matrix components. J Food Prot 72:618–623

    Article  PubMed  Google Scholar 

  • Lapidot A, Romling U, Yaron S (2006) Biofilm formation and the survival of Salmonella Typhimurium on parsley. Int J Food Microbiol 109:229–233. doi:10.1016/j.ijfoodmicro.2006.01.012

    Article  CAS  PubMed  Google Scholar 

  • Lienau EK, Strain E, Wang C, Zheng J, Ottesen AR, Keys CE, Hammack TS, Musser SM, Brown EW, Allard MW, Cao G, Meng J, Stones R (2011) Identification of a Salmonellosis outbreak by means of molecular sequencing. New Engl J Med 364:981–982

    Article  CAS  PubMed  Google Scholar 

  • Macovei L, Miles B, Zurek L (2008) The potential of house flies to contaminate ready-to-eat food with antibiotic resistant enterococci. J Food Prot 71:432–439

    Article  Google Scholar 

  • Martínez-Vaz BF-G (2014) Enteric pathogen-plant interactions: molecular connections leading to colonization and growth and implications for food safety. Microbes Environ 29:123–135

    Article  PubMed  PubMed Central  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  CAS  PubMed  Google Scholar 

  • Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng JD (2007) Enterohemorrhagic Esherichia coli. In: Doyle MP, Beuchat LR (eds) Food microbiology: fundamentals and frontiers, 3rd edn. ASM Press, Washington, DC

    Google Scholar 

  • Mitra R, Cuesta-Alonso E, Wayadande A, Talley J, Gilliland S, Fletcher J (2009) Effect of route of introduction and host cultivar on the colonization, internalization, and movement of the human pathogen Escherichia coli O157:H7 in spinach. J Food Prot 72:1521–1530

    Article  CAS  PubMed  Google Scholar 

  • Olaimat AH (2012) Factors influencing the microbial safety of fresh produce: a review. Food Microbiol 32:1–19

    Article  CAS  PubMed  Google Scholar 

  • Parish MB (2003) Methods to reduce/eliminate pathogens from fresh and fresh-cut produce. Compr Rev Food Sci Food Saf 2:161–173

    Article  Google Scholar 

  • Rasko DA, Worsham PL, Abshire TG, Stanley ST, Bannan JD, Wilson MR, Langham RJ, Decker RS, Jiang L, Read TD, Phillipy AM, Salzeberg SL, Pop M, Van Ert MN, Kenefic LJ, Keim PS, Fraser-Ligget CM, Ravel J (2011) Bacillus anthracis comparative genome analysis in support of the Amerithrax investigation. Proc Natl Acad Sci U S A 108:5027–5032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedel K, Hentzer M, Geisenberger O, Huber B, Steidle A, Wu H, Hoiby N, Givskov M, Molin S, Eberl L (2001) N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147:3249–3263

    Article  CAS  PubMed  Google Scholar 

  • Robert Koch Institute (2011) Report: final presentation and evaluation of epidemiological findings in the EHEC O104:H4 outbreak, Germany 2011. Berlin

    Google Scholar 

  • Schikora A, Virlogeux-Payant I, Bueso E, Garcia AV, Nilau T, Charrier A, Pelletier S, Menanteau P, Baccarini M, Velge P, Hirt H (2011) Conservation of Salmonella infection mechanisms in plants and animals. PLoS One 6. doi:10.1371/journal.pone.0024112

  • Schikora A, Garcia AV, Hirt H (2012) Plants as alternative hosts for Salmonella. Trends Plant Sci 17:245–249. doi:10.1016/j.tplants.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  • Shirron N, Yaron S (2011) Active suppression of early immune response in tobacco by the human pathogen Salmonella Typhimurium. PLoS One 6, e18855. doi:10.1371/journal.pone.0018855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soubeyrand S, Tollenaere C, Haon-Lasportes E, Laine A-L (2014) Regression-based ranking of pathogen strains with respect to their contribution to natural epidemics. PLoS One 9, e86591

    Article  PubMed  PubMed Central  Google Scholar 

  • Swaminathan BC (2007) Listeria monocytogenes. In: Doyle MP, Beuchat LR (eds) Food microbiology: fundamentals and frontiers, 3rd edn. ASM Press, Washington, DC

    Google Scholar 

  • Swaminathan B, Barret TJ, Hunter SB, Tauxe RV, Pulsenet Taskforce CDC (2001) PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg Infect Dis 7:382–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swaminathan B, Gerner-Smidt P, Ng L-K, Lukinmaa S, Kam K-M, Rolando S, Gutierrez EP, Binsztein N (2006) Building PulseNet international: an interconnected system of laboratory networks to facilitate timely public health recognition and response to foodborne disease outbreaks and emerging foodborne diseases. Foodborne Pathog Dis 3:36–50

    Article  PubMed  Google Scholar 

  • Talley JL, Wayadande AC, Wasala LP, Gerry AC, Fletcher J, DeSilva U, Gilliland SE (2009) Association of Escherichia coli O157:H7 with filth flies (Muscidae and Calliphoridae) captured in leafy greens fields and experimental transmission of E. coli O157:H7 to spinach leaves by house flies (Diptera: Muscidae). J Food Prot 72:1547–1552

    Article  CAS  PubMed  Google Scholar 

  • Teplitski M, Barak JD, Schneider KR (2009) Human enteric pathogens in produce: un-answered ecological questions with direct implications for food safety. Curr Opin Plant Biotechnol 20:166–171. doi:10.1016/j.copbio.2009.03.002

    Article  CAS  Google Scholar 

  • Teplitski M, Noel JT, Alagely A, Danyluk MD (2012) Functional genomics studies shed light on the nutrition and gene expression of non-typhoidal Salmonella and enterovirulent E. coli in produce. Food Res Int 45:576–586. doi:10.1016/j.foodres.2011.06.020

    Article  CAS  Google Scholar 

  • Timmons C, Ma LM (2013) Multi-locus variable-number tandem repeat analysis for strain discrimination of non-O157:H7 Shiga toxin-producing Escherichia coli. International Association Food Protection Annual Meeting Abstract. https://iafp.confex.com/iafp/2013/webprogram/Paper4691.html

  • Timmons C, Dobhal S, Fletcher J, Ma LM (2013) Primers with 5’ flaps improve the efficiency and sensitivity of multiplex PCR assays for the detection of Salmonella spp. and Escherichia coli O157:H7. J. J Food Prot 76(4):668–673

    Article  CAS  PubMed  Google Scholar 

  • TNS Opinion & Social (2012) Europeans’ attitudes towards food security, food quality and the countryside. Special Eurobarometer 389. European Commission, DG Agric. and Rural Devel

    Google Scholar 

  • Ventura-Lucas MR (2004) Consumer perceptions and attitudes towards food safety in Portugal. 84th EAAE Seminar, Food safety in a dynamic world, Zeist, The Netherlands, February 8–11, 2004

    Google Scholar 

  • World Health Organization (2002) Terrorist threats to food: guidance for establishing and strengthening prevention and response systems. (Food safety issues). ISBN 92 4 154584 4

    Google Scholar 

  • Wyres K, Conway T, Garg S, Queiroz C, Reumann M, Holt K, Rusu L (2014) WGS analysis and interpretation in clinical and public health microbiology laboratories: what are the requirements and how do existing tools compare? Pathogens 3:437–458

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeni F, Acar S, Polat ÖG, Soyer Y, Alpas H (2014) Rapid and standardized methods for detection of foodborne pathogens and mycotoxins on fresh produce. Food Control 40:359–367

    Article  CAS  Google Scholar 

  • Yeni F, Yavas S, Alpas H, Soyer Y (2015) Most common foodborne pathogens and mycotoxins on fresh produce: a review of recent outbreaks. Crit Rev Food Sci Nutrit. doi:10.1080/10408398.2013.777021

    Google Scholar 

  • Zeng W, Melotto M, He SY (2010) Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr Opin Biotechnol 21:599–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Fletcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fletcher, J. et al. (2017). Vulnerabilities, Threats and Gaps in Food Biosecurity. In: Gullino, M., Stack, J., Fletcher, J., Mumford, J. (eds) Practical Tools for Plant and Food Biosecurity. Plant Pathology in the 21st Century, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-46897-6_3

Download citation

Publish with us

Policies and ethics