Skip to main content

Active Efflux as a Mechanism of Resistance to Antimicrobial Drugs

  • Chapter
  • First Online:
Antimicrobial Drug Resistance

Abstract

Active drug extrusion mediated by efflux transporters is a phenomenon widely observed in both prokaryotic and eukaryotic cells. This process makes a great contribution to intrinsic and acquired resistance in bacteria, fungi and parasites against a broad range of antimicrobial agents and can further interplay with other resistance mechanisms. Drug transporters also function beyond resistance such as those involved in stress response and virulence. There is an ever-growing understanding of drug transporters with respect to their classification, structure, transport mechanisms, regulation and inhibition. This chapter provides an overview of the characteristics and resistance contributions of drug transporters through various examples of clinical significance, with an emphasis on the transporters of the resistance-nodulation-cell division (RND) superfamily in Gram-negative bacteria. The development of clinically-suitable efflux pump inhibitors and novel pump-circumventing antimicrobial drugs continues to be a challenging task. Additionally, the clinical significance of drug transporters highlights the importance of prudent antimicrobial use for minimizing the emergence and spread of antimicrobial drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gottesman MM, Ling V. The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett. 2006;580(4):998–1009. doi:10.1016/j.febslet.2005.12.060.

    Article  CAS  PubMed  Google Scholar 

  2. McMurry L, Petrucci Jr RE, Levy SB. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci U S A. 1980;77(7):3974–7. doi:10.1073/pnas.77.7.3974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Levy SB. Active efflux mechanisms for antimicrobial resistance. Antimicrob Agents Chemother. 1992;36(4):695–703. doi:10.1128/AAC.36.4.695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Waard MA, Van Nistelrooy JG. Induction of fenarimol-efflux activity in Aspergillus nidulans by fungicides inhibiting sterol biosynthesis. J Gen Microbiol. 1981;126(2):483–9. doi: 10.1099/00221287-126-2-483.

  5. Shearer Jr G, Sypherd PS. Cycloheximide efflux in antibiotic-adapted cells of the fungus Mucor racemosus. Antimicrob Agents Chemother. 1988;32(3):341–5. doi:10.1128/AAC.32.3.341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fling ME, Kopf J, Tamarkin A, Gorman JA, Smith HA, Koltin Y. Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate. Mol Gen Genet. 1991;227(2):318–29. doi: 10.1007/BF00259685.

  7. Krogstad DJ, Gluzman IY, Kyle DE, Oduola AM, Martin SK, Milhous WK, Schlesinger PH. Efflux of chloroquine from Plasmodium falciparum: mechanism of chloroquine resistance. Science. 1987;238(4831):1283–5. doi:10.1126/science.3317830.

    Article  CAS  PubMed  Google Scholar 

  8. Krogstad DJ, Gluzman IY, Herwaldt BL, Schlesinger PH, Wellems TE. Energy dependence of chloroquine accumulation and chloroquine efflux in Plasmodium falciparum. Bioch Pharmacol. 1992;43(1):57–62. doi: 10.1016/0006-2952(92)90661-2.

  9. Li X-Z, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs. 2004;64(2):159–204. doi:10.2165/00003495-200464020-00004.

    Article  CAS  PubMed  Google Scholar 

  10. Li X-Z, Nikaido H. Efflux-mediated drug resistance in bacteria: an update. Drugs. 2009;69(12):1555–623. doi:10.2165/11317030-000000000-00000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cannon RD, Lamping E, Holmes AR, Niimi K, Baret PV, Keniya MV, Tanabe K, Niimi M, Goffeau A, Monk BC. Efflux-mediated antifungal drug resistance. Clin Microbiol Rev. 2009;22(2):291–321. doi:10.1128/CMR.00051-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li X-Z, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev. 2015;28(2):337–418. doi: 10.1128/CMR.00117-14.

  13. Saier Jr MH, Paulsen IT, Sliwinski MK, Pao SS, Skurray RA, Nikaido H. Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. FASEB J. 1998;12(3):265–74.

    CAS  PubMed  Google Scholar 

  14. Saier Jr MH, Reddy VS, Tamang DG, Vastermark A. The transporter classification database. Nucleic Acids Res. 2014;42:D251–8. doi:10.1093/nar/gkt1097.

    Article  CAS  PubMed  Google Scholar 

  15. Yen MR, Chen JS, Marquez JL, Sun EI, Saier MH. Multidrug resistance: phylogenetic characterization of superfamilies of secondary carriers that include drug exporters. Methods Mol Biol. 2010;637:47–64. doi:10.1007/978-1-60761-700-6_3.

    Article  CAS  PubMed  Google Scholar 

  16. Hassan KA, Liu Q, Henderson PJ, Paulsen IT. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. mBio. 2015;6(1):e01982–14. doi:10.1128/mBio.01982-14.

  17. Lee A, Mao W, Warren MS, Mistry A, Hoshino K, Okumura R, Ishida H, Lomovskaya O. Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J Bacteriol. 2000;182(11):3142–50. doi:10.1128/JB.182.11.3142-3150.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003;67(4):593–656. doi:10.1128/MMBR.67.4.593-656.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu Rev Biochem. 1995;64:29–63. doi:10.1146/annurev.bi.64.070195.000333.

    Article  CAS  PubMed  Google Scholar 

  20. van Veen HW, Callaghan R, Soceneantu L, Sardini A, Konings WN, Higgins CF. A bacterial antibiotic-resistance gene that complements the human multidrug-resistance P-glycoprotein gene. Nature. 1998;391(6664):291–5. doi:10.1038/34669.

    Article  PubMed  Google Scholar 

  21. Dawson RJP, Locher KP. Structure of a bacterial multidrug ABC transporter. Nature. 2006;443(7108):180–5. doi:10.1038/nature05155.

    Article  CAS  PubMed  Google Scholar 

  22. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science. 2009;323(5922):1718–22. doi:10.1126/science.1168750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jin MS, Oldham ML, Zhang Q, Chen J. Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature. 2012;490(7421):566–9. doi:10.1038/nature11448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. George AM, Jones PM. Perspectives on the structure-function of ABC transporters: the switch and constant contact models. Prog Biophys Mol Biol. 2012;109(3):95–107. doi:10.1016/j.pbiomolbio.2012.06.003.

    Article  CAS  PubMed  Google Scholar 

  25. Jones PM, George AM. Opening of the ADP-bound active site in the ABC transporter ATPase dimer: evidence for a constant contact, alternating sites model for the catalytic cycle. Proteins. 2009;75(2):387–96. doi:10.1002/prot.22250.

    Article  CAS  PubMed  Google Scholar 

  26. Jones PM, George AM. A reciprocating twin-channel model for ABC transporters. Q Rev Biophys. 2014;47(3):189–220. doi:10.1017/S0033583514000031.

    Article  CAS  PubMed  Google Scholar 

  27. Gbelska Y, Krijger JJ, Breunig KD. Evolution of gene families: the multidrug resistance transporter genes in five related yeast species. FEMS Yeast Res. 2006;6(3):345–55. doi:10.1111/j.1567-1364.2006.00058.x.

    Article  CAS  PubMed  Google Scholar 

  28. Jack DL, Yang NM, Saier Jr MH. The drug/metabolite transporter superfamily. Eur J Biochem. 2001;268(13):3620–39. doi:10.1046/j.1432-1327.2001.02265.x.

    Article  CAS  PubMed  Google Scholar 

  29. Schuldiner S. EmrE, a model for studying evolution and mechanism of ion-coupled transporters. Biochim Biophys Acta. 2009;1794(5):748–62. doi:10.1016/j.bbapap.2008.12.018.

    Article  CAS  PubMed  Google Scholar 

  30. Masaoka Y, Ueno Y, Morita Y, Kuroda T, Mizushima T, Tsuchiya T. A two-component multidrug efflux pump, EbrAB, in Bacillus subtilis. J Bacteriol. 2000;182(8):2307–10. doi:10.1128/JB.182.8.2307-2310.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grinius L, Dreguniene G, Goldberg EB, Liao CH, Projan SJ. A staphylococcal multidrug resistance gene product is a member of a new protein family. Plasmid. 1992;27(2):119–29. doi: 10.1016/0147-619X(92)90012-Y.

  32. Beketskaia MS, Bay DC, Turner RJ. Outer membrane protein OmpW participates with small multidrug resistance protein member EmrE in quaternary cationic compound efflux. J Bacteriol. 2014;196(10):1908–14. doi:10.1128/JB.01483-14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Nishino K, Yamaguchi A. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol. 2001;183(20):5803–12. doi:10.1128/JB.183.20.5803-5812.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Srinivasan VB, Rajamohan G. KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother. 2013;57(9):4449–62. doi:10.1128/AAC.02284-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Srinivasan VB, Rajamohan G, Gebreyes WA. Role of AbeS, a novel efflux pump of the SMR family of transporters, in resistance to antimicrobial agents in Acinetobacter baumannii. Antimicrob Agents Chemother. 2009;53(12):5312–6. doi:10.1128/AAC.00748-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li X-Z, Poole K, Nikaido H. Contributions of MexAB-OprM and an EmrE homolog to intrinsic resistance of Pseudomonas aeruginosa to aminoglycosides and dyes. Antimicrob Agents Chemother. 2003;47(1):27–33. doi:10.1128/AAC.47.1.27-33.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte Y, Coulibaly D, Dicko A, Su XZ, Nomura T, Fidock DA, Wellems TE, Plowe CV. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med. 2001;344(4):257–63. doi:10.1056/NEJM200101253440403.

    Article  CAS  PubMed  Google Scholar 

  38. Martin RE, Marchetti RV, Cowan AI, Howitt SM, Broer S, Kirk K. Chloroquine transport via the malaria parasite’s chloroquine resistance transporter. Science. 2009;325(5948):1680–2. doi:10.1126/science.1175667.

    Article  CAS  PubMed  Google Scholar 

  39. Pao SS, Paulsen IT, Saier Jr MH. Major facilitator superfamily. Microbiol Mol Biol Rev. 1998;62(1):1–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Reddy VS, Shlykov MA, Castillo R, Sun EI, Saier Jr MH. The major facilitator superfamily (MFS) revisited. FEBS J. 2012;279(11):2022–35. doi:10.1111/j.1742-4658.2012.08588.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sapunaric FM, Aldema-Ramos M, McMurry LM. Tetracycline resistance: efflux, mutation, and other mechanisms. In: White DG, Alekshun MN, McDermot PF, editors. Frontiers in Antimicrobial Resistance, a tribute to Stuart B. Levy. Washington, DC: ASM Press; 2005. p. 3–18.

    Chapter  Google Scholar 

  42. Hvorup RN, Winnen B, Chang AB, Jiang Y, Zhou XF, Saier Jr MH. The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. Eur J Biochem. 2003;270(5):799–813. doi:10.1046/j.1432-1033.2003.03418.x.

    Article  CAS  PubMed  Google Scholar 

  43. Morita Y, Kodama K, Shiota S, Mine T, Kataoka A, Mizushima T, Tsuchiya T. NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother. 1998;42(7):1778–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kuroda T, Tsuchiya T. Multidrug efflux transporters in the MATE family. Biochim Biophys Acta. 2009;1794(5):763–8. doi:10.1016/j.bbapap.2008.11.012.

    Article  CAS  PubMed  Google Scholar 

  45. He X, Szewczyk P, Karyakin A, Evin M, Hong WX, Zhang Q, Chang G. Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature. 2010;467(7318):991–4. doi:10.1038/nature09408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kaatz GW, McAleese F, Seo SM. Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob Agents Chemother. 2005;49(5):1857–64. doi:10.1128/AAC.49.5.1857-1864.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McAleese F, Petersen P, Ruzin A, Dunman PM, Murphy E, Projan SJ, Bradford PA. A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrob Agents Chemother. 2005;49(5):1865–71. doi:10.1128/AAC.49.5.1865-1871.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Minematsu T, Giacomini KM. Interactions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins. Mol Cancer Ther. 2011;10(3):531–9. doi:10.1158/1535-7163.MCT-10-0731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A, Saier Jr MH. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol. 1999;1(1):107–25.

    CAS  PubMed  Google Scholar 

  50. Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE. Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J Bacteriol. 1993;175(19):6299–313. doi: 10.1128/jb.175.19.6299-6313.1993.

  51. Poole K, Krebes K, McNally C, Neshat S. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol. 1993;175(22):7363–72. doi: 10.1128/jb.175.22.7363-7372.1993.

  52. Li X-Z, Livermore DM, Nikaido H. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob Agents Chemother. 1994;38(8):1732–41. doi:10.1128/AAC.38.8.1732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li X-Z, Ma D, Livermore DM, Nikaido H. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to β-lactam resistance. Antimicrob Agents Chemother. 1994;38(8):1742–52. doi:10.1128/AAC.38.8.1742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nikaido H, Takatsuka Y. Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta. 2009;1794(5):769–81. doi:10.1016/j.bbapap.2008.10.004.

    Article  CAS  PubMed  Google Scholar 

  55. Long F, Su CC, Lei HT, Bolla JR, Do SV, Yu EW. Structure and mechanism of the tripartite CusCBA heavy-metal efflux complex. Philos Trans R Soc Lond B Biol Sci. 2012;367(1592):1047–58. doi:10.1098/rstb.2011.0203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Poole K. Stress responses as determinants of antimicrobial resistance in Pseudomonas aeruginosa: multidrug efflux and more. Can J Microbiol. 2014;60(12):783–91. doi:10.1139/cjm-2014-0666.

    Article  CAS  PubMed  Google Scholar 

  57. Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature. 2006;443(7108):173–9. doi:10.1038/nature05076.

    Article  CAS  PubMed  Google Scholar 

  58. Murakami S. Multidrug efflux transporter, AcrB-the pumping mechanism. Curr Opin Struct Biol. 2008;18(4):459–65. doi:10.1016/j.sbi.2008.06.007.

  59. Nakashima R, Sakurai K, Yamasaki S, Nishino K, Yamaguchi A. Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature. 2011;480(7378):565–9. doi:10.1038/nature10641.

    CAS  PubMed  Google Scholar 

  60. Du D, Wang Z, James NR, Voss JE, Klimont E, Ohene-Agyei T, Venter H, Chiu W, Luisi BF. Structure of the AcrAB-TolC multidrug efflux pump. Nature. 2014;509(7501):512–5. doi:10.1038/nature13205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature. 2000;405(6789):914–9. doi:10.1038/35016007.

    Article  CAS  PubMed  Google Scholar 

  62. Symmons MF, Bokma E, Koronakis E, Hughes C, Koronakis V. The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proc Natl Acad Sci U S A. 2009;106(17):7173–8. doi:10.1073/pnas.0900693106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Koenderink JB, Kavishe RA, Rijpma SR, Russel FG. The ABCs of multidrug resistance in malaria. Trends Parasitol. 2010;26(9):440–6. doi:10.1016/j.pt.2010.05.002.

    Article  CAS  PubMed  Google Scholar 

  64. Sulavik MC, Houseweart C, Cramer C, Jiwani N, Murgolo N, Greene J, DiDomenico B, Shaw KJ, Miller GH, Hare R, Shimer G. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob Agents Chemother. 2001;45(4):1126–36. doi:10.1128/AAC.45.4.1126-1136.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nichols RJ, Sen S, Choo YJ, Beltrao P, Zietek M, Chaba R, Lee S, Kazmierczak KM, Lee KJ, Wong A, Shales M, Lovett S, Winkler ME, Krogan NJ, Typas A, Gross CA. Phenotypic landscape of a bacterial cell. Cell. 2011;144(1):143–56. doi:10.1016/j.cell.2010.11.052.

    Article  CAS  PubMed  Google Scholar 

  66. DeMarco CE, Cushing LA, Frempong-Manso E, Seo SM, Jaravaza TA, Kaatz GW. Efflux-related resistance to norfloxacin, dyes, and biocides in bloodstream isolates of Staphylococcus aureus. Antimicrob Agents Chemother. 2007;51(9):3235–9. doi:10.1128/AAC.00430-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Costa SS, Falcao C, Viveiros M, Machado D, Martins M, Melo-Cristino J, Amaral L, Couto I. Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus. BMC Microbiol. 2011;11:241. doi:10.1186/1471-2180-11-241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huet AA, Raygada JL, Mendiratta K, Seo SM, Kaatz GW. Multidrug efflux pump overexpression in Staphylococcus aureus after single and multiple in vitro exposures to biocides and dyes. Microbiology. 2008;154(10):3144–53. doi:10.1099/mic.0.2008/021188-0.

    Article  CAS  PubMed  Google Scholar 

  69. Sutcliffe J, Tait-Kamradt A, Wondrack L. Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system. Antimicrob Agents Chemother. 1996;40(8):1817–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Tait-Kamradt A, Clancy J, Cronan M, Dib-Hajj F, Wondrack L, Yuan W, Sutcliffe J. mefE is necessary for the erythromycin-resistant M phenotype in Streptococcus pneumoniae. Antimicrob Agents Chemother. 1997;41(10):2251–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Garvey MI, Piddock LJ. The efflux pump inhibitor reserpine selects multidrug-resistant Streptococcus pneumoniae strains that overexpress the ABC transporters PatA and PatB. Antimicrob Agents Chemother. 2008;52(5):1677–85. doi:10.1128/AAC.01644-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Garvey MI, Baylay AJ, Wong RL, Piddock LJ. Overexpression of patA and patB, which encode ABC transporters, is associated with fluoroquinolone resistance in clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother. 2011;55(1):190–6. doi:10.1128/AAC.00672-10.

    Article  CAS  PubMed  Google Scholar 

  73. Nikaido H. The role of outer membrane and efflux pumps in the resistance of Gram-negative bacteria. Can we improve drug access? Drug Resist Updat. 1998;1(2):93–8. doi:10.1016/S1368-7646(98)80023-X.

  74. Brown DG, May-Dracka TL, Gagnon MM, Tommasi R. Trends and exceptions of physical properties on antibacterial activity for Gram-positive and Gram-negative pathogens. J Med Chem. 2014;57(23):10144–61. doi:10.1021/jm501552x.

    Article  CAS  PubMed  Google Scholar 

  75. Palmer M. Efflux of cytoplasmically acting antibiotics from Gram-negative bacteria: periplasmic substrate capture by multicomponent efflux pumps inferred from their cooperative action with single-component transporters. J Bacteriol. 2003;185(17):5287–9. doi:10.1128/JB.185.17.5287-5289.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li X-Z, Nikaido H, Poole K. Role of MexA-MexB-OprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1995;39(9):1948–53. doi:10.1128/AAC.39.9.1948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Damier-Piolle L, Magnet S, Bremont S, Lambert T, Courvalin P. AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrob Agents Chemother. 2008;52(2):557–62. doi:10.1128/AAC.00732-07.

    Article  CAS  PubMed  Google Scholar 

  78. Coyne S, Courvalin P, Périchon B. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother. 2011;55(3):947–53. doi:10.1128/AAC.01388-10.

    Article  CAS  PubMed  Google Scholar 

  79. Aires JR, Köhler T, Nikaido H, Plésiat P. Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother. 1999;43(11):2624–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hocquet D, Roussel-Delvallez M, Cavallo JD, Plésiat P. MexAB-OprM- and MexXY-overproducing mutants are very prevalent among clinical strains of Pseudomonas aeruginosa with reduced susceptibility to ticarcillin. Antimicrob Agents Chemother. 2007;51(4):1582–3. doi: 10.1128/AAC.01334-06.

  81. Poole K, Gotoh N, Tsujimoto H, Zhao Q, Wada A, Yamasaki T, Neshat S, Yamagishi J, Li X-Z, Nishino T. Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol. 1996;21(4):713–24. doi:10.1046/j.1365-2958.1996.281397.x.

    Article  CAS  PubMed  Google Scholar 

  82. Reinhardt A, Köhler T, Wood P, Rohner P, Dumas JL, Ricou B, van Delden C. Development and persistence of antimicrobial resistance in Pseudomonas aeruginosa: a longitudinal observation in mechanically ventilated patients. Antimicrob Agents Chemother. 2007;51(4):1341–50. doi:10.1128/AAC.01278-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hagman KE, Pan W, Spratt BG, Balthazar JT, Judd RC, Shafer WM. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology. 1995;141(3):611–22. doi:10.1099/13500872-141-3-611.

    Article  CAS  PubMed  Google Scholar 

  84. Shafer WM, Qu X, Waring AJ, Lehrer RI. Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci U S A. 1998;95(4):1829–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Golparian D, Shafer WM, Ohnishi M, Unemo M. Importance of multidrug efflux pumps in the antimicrobial resistance property of clinical multidrug-resistant isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother. 2014;58(6):3556–9. doi:10.1128/AAC.00038-14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Blair JM, Bavro VN, Ricci V, Modi N, Cacciotto P, Kleinekathfer U, Ruggerone P, Vargiu AV, Baylay AJ, Smith HE, Brandon Y, Galloway D, Piddock LJ. AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity. Proc Natl Acad Sci U S A. 2015;112(11):3511–6. doi:10.1073/pnas.1419939112.

  87. Li X-Z, Zhang L, Nikaido H. Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother. 2004;48(7):2415–23. doi:10.1128/AAC.48.7.2415-2423.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Balganesh M, Kuruppath S, Marcel N, Sharma S, Nair A, Sharma U. Rv1218c, an ABC transporter of Mycobacterium tuberculosis with implications in drug discovery. Antimicrob Agents Chemother. 2010;54(12):5167–72. doi:10.1128/AAC.00610-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Balganesh M, Dinesh N, Sharma S, Kuruppath S, Nair AV, Sharma U. Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates. Antimicrob Agents Chemother. 2012;56(5):2643–51. doi:10.1128/AAC.06003-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rodrigues L, Villellas C, Bailo R, Viveiros M, Ainsa JA. Role of the Mmr efflux pump in drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2013;57(2):751–7. doi:10.1128/AAC.01482-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schmalstieg AM, Srivastava S, Belkaya S, Deshpande D, Meek C, Leff R, van Oers NS, Gumbo T. The antibiotic resistance arrow of time: efflux pump induction is a general first step in the evolution of mycobacterial drug resistance. Antimicrob Agents Chemother. 2012;56(9):4806–15. doi:10.1128/AAC.05546-11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Wang K, Pei H, Huang B, Zhu X, Zhang J, Zhou B, Zhu L, Zhang Y, Zhou FF. The expression of ABC efflux pump, Rv1217c-Rv1218c, and its association with multidrug resistance of Mycobacterium tuberculosis in China. Curr Microbiol. 2013;66(3):222–6. doi:10.1007/s00284-012-0215-3.

  93. Machado D, Couto I, Perdigao J, Rodrigues L, Portugal I, Baptista P, Veigas B, Amaral L, Viveiros M. Contribution of efflux to the emergence of isoniazid and multidrug resistance in Mycobacterium tuberculosis. PLoS ONE. 2012;7(4):e34538. doi:10.1371/journal.pone.0034538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zimic M, Fuentes P, Gilman RH, Gutierrez AH, Kirwan D, Sheen P. Pyrazinoic acid efflux rate in Mycobacterium tuberculosis is a better proxy of pyrazinamide resistance. Tuberculosis. 2012;92(1):84–91. doi:10.1016/j.tube.2011.09.002.

    Article  CAS  PubMed  Google Scholar 

  95. Coleman JJ, Mylonakis E. Efflux in fungi: la piece de resistance. PLoS Pathog. 2009;5(6):e1000486. doi:10.1371/journal.ppat.1000486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Pfaller MA. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med. 2012;125 Suppl 1:S3–13. doi:10.1016/j.amjmed.2011.11.001.

    Article  CAS  PubMed  Google Scholar 

  97. Shapiro RS, Robbins N, Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev. 2011;75(2):213–67. doi:10.1128/MMBR.00045-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Blum G, Hortnagl C, Jukic E, Erbeznik T, Pumpel T, Dietrich H, Nagl M, Speth C, Rambach G, Lass-Florl C. New insight into amphotericin B resistance in Aspergillus terreus. Antimicrob Agents Chemother. 2013;57(4):1583–8. doi:10.1128/AAC.01283-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Morschhauser J. Regulation of multidrug resistance in pathogenic fungi. Fungal Genet Biol. 2010;47(2):94–106. doi:10.1016/j.fgb.2009.08.002.

    Article  PubMed  CAS  Google Scholar 

  100. Tsao S, Rahkhoodaee F, Raymond M. Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance. Antimicrob Agents Chemother. 2009;53(4):1344–52. doi:10.1128/AAC.00926-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Andrade AC, Del Sorbo G, Van Nistelrooy JG, Waard MA. The ABC transporter AtrB from Aspergillus nidulans mediates resistance to all major classes of fungicides and some natural toxic compounds. Microbiology. 2000;146(8):1987–97. doi: 10.1099/00221287-146-8-1987.

  102. Eddouzi J, Parker JE, Vale-Silva LA, Coste A, Ischer F, Kelly S, Manai M, Sanglard D. Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals. Antimicrob Agents Chemother. 2013;57(7):3182–93. doi:10.1128/AAC.00555-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lespine A, Menez C, Bourguinat C, Prichard RK. P-glycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics: prospects for reversing transport-dependent anthelmintic resistance. Int J Parasitol Drugs Drug Resist. 2012;2:58–75. doi:10.1016/j.ijpddr.2011.10.001.

    Article  PubMed  CAS  Google Scholar 

  104. Greenberg RM. ABC multidrug transporters in schistosomes and other parasitic flatworms. Parasitol Int. 2013;62(6):647–53. doi:10.1016/j.parint.2013.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kasinathan RS, Sharma LK, Cunningham C, Webb TR, Greenberg RM. Inhibition or knockdown of ABC transporters enhances susceptibility of adult and juvenile schistosomes to praziquantel. PLoS Negl Trop Dis. 2014;8(10):e3265. doi:10.1371/journal.pntd.0003265.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Petersen I, Eastman R, Lanzer M. Drug-resistant malaria: molecular mechanisms and implications for public health. FEBS Lett. 2011;585(11):1551–62. doi:10.1016/j.febslet.2011.04.042.

    Article  CAS  PubMed  Google Scholar 

  107. Li X-Z, Zhang L, Poole K. Interplay between the MexA-MexB-OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa. J Antimicrob Chemother. 2000;45(4):433–6. doi:10.1093/jac/45.4.433.

    Article  CAS  PubMed  Google Scholar 

  108. Kropinski AM, Kuzio J, Angus BL, Hancock RE. Chemical and chromatographic analysis of lipopolysaccharide from an antibiotic-supersusceptible mutant of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1982;21(2):310–9. doi: 10.1128/AAC.21.2.310.

  109. Cagliero C, Mouline C, Cloeckaert A, Payot S. Synergy between efflux pump CmeABC and modifications in ribosomal proteins L4 and L22 in conferring macrolide resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother. 2006;50(11):3893–6. doi:10.1128/AAC.00616-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mazzariol A, Cornaglia G, Nikaido H. Contributions of the AmpC β-lactamase and the AcrAB multidrug efflux system in intrinsic resistance of Escherichia coli K-12 to β-lactams. Antimicrob Agents Chemother. 2000;44(5):1387–90. doi:10.1128/AAC.44.5.1387-1390.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Poole K. Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol. 2012;20(5):227–34. doi:10.1016/j.tim.2012.02.004.

    Article  CAS  PubMed  Google Scholar 

  112. Salunkhe P, Smart CH, Morgan JA, Panagea S, Walshaw MJ, Hart CA, Geffers R, Tummler B, Winstanley C. A cystic fibrosis epidemic strain of Pseudomonas aeruginosa displays enhanced virulence and antimicrobial resistance. J Bacteriol. 2005;187(14):4908–20. doi:10.1128/JB.187.14.4908-4920.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Szumowski JD, Adams KN, Edelstein PH, Ramakrishnan L. Antimicrobial efflux pumps and Mycobacterium tuberculosis drug tolerance: evolutionary considerations. Curr Top Microbiol Immunol. 2013;374:81–108. doi:10.1007/82_2012_300.

    CAS  PubMed  Google Scholar 

  114. Angiolella L, Stringaro AR, De Bernardis F, Posteraro B, Bonito M, Toccacieli L, Torosantucci A, Colone M, Sanguinetti M, Cassone A, Palamara AT. Increase of virulence and its phenotypic traits in drug-resistant strains of Candida albicans. Antimicrob Agents Chemother. 2008;52(3):927–36. doi:10.1128/AAC.01223-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sanguinetti M, Posteraro B, La Sorda M, Torelli R, Fiori B, Santangelo R, Delogu G, Fadda G. Role of AFR1, an ABC transporter-encoding gene, in the in vivo response to fluconazole and virulence of Cryptococcus neoformans. Infect Immun. 2006;74(2):1352–9. doi:10.1128/IAI.74.2.1352-1359.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rosenthal PJ. The interplay between drug resistance and fitness in malaria parasites. Mol Microbiol. 2013;89(6):1025–38. doi:10.1111/mmi.12349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cuthbertson L, Nodwell JR. The TetR family of regulators. Microbiol Mol Biol Rev. 2013;77(3):440–75. doi:10.1128/MMBR.00018-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hobbs EC, Yin X, Paul BJ, Astarita JL, Storz G. Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. Proc Natl Acad Sci U S A. 2012;109(41):16696–701. doi:10.1073/pnas.1210093109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Schindler BD, Seo SM, Birukou I, Brennan RG, Kaatz GW. Mutations within the mepA operator affect binding of the MepR regulatory protein and its induction by MepA substrates in Staphylococcus aureus. J Bacteriol. 2015;197(6):1104–14. doi:10.1128/JB.02558-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Macone AB, Caruso BK, Leahy RG, Donatelli J, Weir S, Draper MP, Tanaka SK, Levy SB. In vitro and in vivo antibacterial activities of omadacycline, a novel aminomethylcycline. Antimicrob Agents Chemother. 2014;58(2):1127–35. doi:10.1128/AAC.01242-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Draper MP, Weir S, Macone A, Donatelli J, Trieber CA, Tanaka SK, Levy SB. Mechanism of action of the novel aminomethylcycline antibiotic omadacycline. Antimicrob Agents Chemother. 2014;58(3):1279–83. doi:10.1128/AAC.01066-13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Pucci MJ, Bush K. Investigational antimicrobial agents of 2013. Clin Microbiol Rev. 2013;26(4):792–821. doi:10.1128/CMR.00033-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nakashima R, Sakurai K, Yamasaki S, Hayashi K, Nagata C, Hoshino K, Onodera Y, Nishino K, Yamaguchi A. Structural basis for the inhibition of bacterial multidrug exporters. Nature. 2013;500(7460):102–6. doi:10.1038/nature12300.

    Article  CAS  PubMed  Google Scholar 

  124. Lomovskaya O, Warren MS, Lee A, Galazzo J, Fronko R, Lee M, Blais J, Cho D, Chamberland S, Renau T, Leger R, Hecker S, Watkins W, Hoshino K, Ishida H, Lee VJ. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother. 2001;45(1):105–16. doi:10.1128/AAC.45.1.105-116.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Vargiu AV, Ruggerone P, Opperman TJ, Nguyen ST, Nikaido H. Inhibition of E. coli AcrB multidrug efflux pump by MBX2319: molecular mechanism and comparison with other inhibitors. Antimicrob Agents Chemother. 2014;58(10):6224–34. doi:10.1128/AAC.03283-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hansen LH, Johannesen E, Burmølle M, Sørensen AH, Sørensen SJ. Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli. Antimicrob Agents Chemother. 2004;48(9):3332–7. doi:10.1128/AAC.48.9.3332-3337.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li X-Z, Elkins CA, Zgurskaya HI, editors. Efflux-mediated antimicrobial resistance in bacteria: mechanisms, regulation and clinical implications. Adis, Springer Nature; 2016. doi:10.1007/978-3-319-39658-3.

  128. Lee EW, Huda MN, Kuroda T, Mizushima T, Tsuchiya T. EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis. Antimicrob Agents Chemother. 2003;47(12):3733–8. doi:10.1128/AAC.47.12.3733-3738.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Poelarends GJ, Mazurkiewicz P, Konings WN. Multidrug transporters and antibiotic resistance in Lactococcus lactis. Biochim Biophys Acta. 2002;1555(1–3):1–7. doi:10.1016/S0005-2728(02)00246-3.

  130. Velamakanni S, Yao Y, Gutmann DA, van Veen HW. Multidrug transport by the ABC transporter Sav 1866 from Staphylococcus aureus. Biochemistry. 2008;47(35):9300–8. doi:10.1021/bi8006737.

    Article  CAS  PubMed  Google Scholar 

  131. Kobayashi N, Nishino K, Yamaguchi A. Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol. 2001;183(19):5639–44. doi: 10.1128/JB.183.19.5639-5644.2001.

  132. Hu RM, Liao ST, Huang CC, Huang YW, Yang TC. An inducible fusaric acid tripartite efflux pump contributes to the fusaric acid resistance in Stenotrophomonas maltophilia. PLoS ONE. 2012;7(12):e51053. doi:10.1371/journal.pone.0051053.

  133. Marrer E, Schad K, Satoh AT, Page MG, Johnson MM, Piddock LJ. Involvement of the putative ATP-dependent efflux proteins PatA and PatB in fluoroquinolone resistance of a multidrug-resistant mutant of Streptococcus pneumoniae. Antimicrob Agents Chemother. 2006;50(2):685–93. doi:10.1128/AAC.50.2.685-693.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Huda N, Lee EW, Chen J, Morita Y, Kuroda T, Mizushima T, Tsuchiya T. Molecular cloning and characterization of an ABC multidrug efflux pump, VcaM, in Non-O1 Vibrio cholerae. Antimicrob Agents Chemother. 2003;47(8):2413–7. doi:10.1128/AAC.47.8.2413-2417.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Nascimento AM, Goldman GH, Park S, Marras SA, Delmas G, Oza U, Lolans K, Dudley MN, Mann PA, Perlin DS. Multiple resistance mechanisms among Aspergillus fumigatus mutants with high-level resistance to itraconazole. Antimicrob Agents Chemother. 2003;47(5):1719–26. doi:10.1128/AAC.47.5.1719-1726.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Slaven JW, Anderson MJ, Sanglard D, Dixon GK, Bille J, Roberts IS, Denning DW. Increased expression of a novel Aspergillus fumigatus ABC transporter gene, atrF, in the presence of itraconazole in an itraconazole resistant clinical isolate. Fungal Genet Biol. 2002;36(3):199–206. doi:10.1016/S1087-1845(02)00016-6.

    Article  CAS  PubMed  Google Scholar 

  137. Henry M, Alibert S, Orlandi-Pradines E, Bogreau H, Fusai T, Rogier C, Barbe J, Pradines B. Chloroquine resistance reversal agents as promising antimalarial drugs. Curr Drug Targets. 2006;7(8):935–48. doi:10.2174/138945006778019372.

    Article  CAS  PubMed  Google Scholar 

  138. Veiga MI, Osorio NS, Ferreira PE, Franzen O, Dahlstrom S, Lum JK, Nosten F, Gil JP. Complex polymorphisms in the Plasmodium falciparum multidrug resistance protein 2 gene and its contribution to antimalarial response. Antimicrob Agents Chemother. 2014;58(12):7390–7. doi:10.1128/AAC.03337-14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Yoshida H, Bogaki M, Nakamura S, Ubukata K, Konno M. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J Bacteriol. 1990;172(12):6942–9. doi: 10.1128/jb.172.12.6942-6949.1990.

  140. Littlejohn TG, Paulsen IT, Gillespie MT, Tennent JM, Midgley M, Jones IG, Purewal AS, Skurray RA. Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcus aureus. FEMS Microbiol Lett. 1992;95(2–3):259–65. doi:10.1016/0378-1097(92)90439-U.

    Article  CAS  Google Scholar 

  141. Roca I, Marti S, Espinal P, Martínez P, Gibert I, Vila J. CraA, an MFS efflux pump associated with chloramphenicol resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2009;53(9):4013–4. doi:10.1128/AAC.00584-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Nishino K, Latifi T, Groisman EA. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol. 2006;59(1):126–41. doi:10.1111/j.1365-2958.2005.04940.x.

    Article  CAS  PubMed  Google Scholar 

  143. Horiyama T, Yamaguchi A, Nishino K. TolC dependency of multidrug efflux systems in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother. 2010;65(7):1372–6. doi:10.1093/jac/dkq160.

    Article  CAS  PubMed  Google Scholar 

  144. Nishino K, Yamaguchi A. Overexpression of the response regulator evgA of the two-component signal transduction system modulates multidrug resistance conferred by multidrug resistance transporters. J Bacteriol. 2001;183(4):1455–8. doi:10.1128/JB.183.4.1455-1458.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Eguchi Y, Oshima T, Mori H, Aono R, Yamamoto K, Ishihama A, Utsumi R. Transcriptional regulation of drug efflux genes by EvgAS, a two-component system in Escherichia coli. Microbiology. 2003;149(10):2819–28. doi:10.1099/mic.0.26460-0.

    Article  CAS  PubMed  Google Scholar 

  146. Nishino K, Yamaguchi A. Role of histone-like protein H-NS in multidrug resistance of Escherichia coli. J Bacteriol. 2004;186(5):1423–9. doi:10.1128/JB.186.5.1423-1429.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Srinivasan VB, Singh BB, Priyadarshi N, Chauhan NK, Rajamohan G. Role of novel multidrug efflux pump involved in drug resistance in Klebsiella pneumoniae. PLoS ONE. 2014;9(5): e96288. doi:10.1371/journal.pone.0096288.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Cattoir V, Poirel L, Nordmann P. Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France. Antimicrob Agents Chemother. 2008;52(10):3801–4. doi:10.1128/AAC.00638-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ainsa JA, Blokpoel MC, Otal I, Young DB, De Smet KA, Martin C. Molecular cloning and characterization of Tap, a putative multidrug efflux pump present in Mycobacterium fortuitum and Mycobacterium tuberculosis. J Bacteriol. 1998;180(22):5836–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Ramón-García S, Mick V, Dainese E, Martin C, Thompson CJ, De Rossi E, Manganelli R, Ainsa JA. Functional and genetic characterization of the Tap efflux pump in Mycobacterium bovis BCG. Antimicrob Agents Chemother. 2012;56(4):2074–83. doi:10.1128/AAC.05946-11.

  151. Su XZ, Chen J, Mizushima T, Kuroda T, Tsuchiya T. AbeM, an H+-coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters. Antimicrob Agents Chemother. 2005;49(10):4362–4. doi:10.1128/AAC.49.10.4362-4364.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Miyamae S, Ueda O, Yoshimura F, Hwang J, Tanaka Y, Nikaido H. A MATE family multidrug efflux transporter pumps out fluoroquinolones in Bacteroides thetaiotaomicron. Antimicrob Agents Chemother. 2001;45(12):3341–6. doi:10.1128/AAC.45.12.3341-3346.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Turner RJ, Taylor DE, Weiner JH. Expression of Escherichia coli TehA gives resistance to antiseptics and disinfectants similar to that conferred by multidrug resistance efflux pumps. Antimicrob Agents Chemother. 1997;41(2):440–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Swick MC, Morgan-Linnell SK, Carlson KM, Zechiedrich L. Expression of multidrug efflux pump genes acrAB-tolC, mdfA, and norE in Escherichia coli clinical isolates as a function of fluoroquinolone and multidrug resistance. Antimicrob Agents Chemother. 2011;55(2):921–4. doi:10.1128/AAC.00996-10.

    Article  CAS  PubMed  Google Scholar 

  155. Gomes AR, Westh H, de Lencastre H. Origins and evolution of methicillin-resistant Staphylococcus aureus clonal lineages. Antimicrob Agents Chemother. 2006;50(10):3237–44. doi: 10.1128/AAC.00521-06.

  156. Lennen RM, Politz MG, Kruziki MA, Pfleger BF. Identification of transport proteins involved in free fatty acid efflux in Escherichia coli. J Bacteriol. 2013;195(1):135–44. doi:10.1128/JB.01477-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Magnet S, Courvalin P, Lambert T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother. 2001;45(12):3375–80. doi:10.1128/AAC.45.12.3375-3380.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Coyne S, Rosenfeld N, Lambert T, Courvalin P, Perichon B. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2010;54(10):4389–93. doi:10.1128/AAC.00155-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Rajamohan G, Srinivasan VB, Gebreyes WA. Novel role of Acinetobacter baumannii RND efflux transporters in mediating decreased susceptibility to biocides. J Antimicrob Chemother. 2010;65(2):228–32. doi:10.1093/jac/dkp427.

    Article  CAS  PubMed  Google Scholar 

  160. Köhler T, Michéa-Hamzehpour M, Henze U, Gotoh N, Curty LK, Pechère JC. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol. 1997;23(2):345–54. doi:10.1046/j.1365-2958.1997.2281594.x.

    Article  PubMed  Google Scholar 

  161. Li X-Z, Zhang L, Poole K. SmeC, an outer membrane multidrug efflux protein of Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 2002;46(2):333–43. doi: 10.1128/AAC.46.2.333-343.2002.

  162. Zhang L, Li XZ, Poole K. SmeDEF multidrug efflux pump contributes to intrinsic multidrug resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 2001;45(12):3497–503. doi: 10.1128/AAC.45.12.3497-3503.2001.

Download references

Acknowledgements

The views in this chapter do not necessarily reflect those of the author’s affiliation, Health Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Zhi Li M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Li, XZ. (2017). Active Efflux as a Mechanism of Resistance to Antimicrobial Drugs. In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-46718-4_10

Download citation

Publish with us

Policies and ethics