Skip to main content

The Structure and Function of the PRMT5:MEP50 Complex

  • Chapter
  • First Online:
Macromolecular Protein Complexes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 83))

Abstract

Protein arginine methyltransferase 5 (PRMT5) plays multiple roles in cellular processes at different stages of the cell cycle in a tissue specific manner. PRMT5 in complex with MEP50/p44/WDR77 associates with a plethora of partner proteins to symmetrically dimethylate arginine residues on target proteins in both the nucleus and the cytoplasm. Overexpression of PRMT5 has been observed in several cancers, making it an attractive drug target. The structure of the 453 kDa heterooctameric PRMT5:MEP50 complex bound to an S-adenosylmethionine analog and a substrate peptide provides valuable insights into this intriguing target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreu-Perez P, Esteve-Puig R, de Torre-Minguela C, Lopez-Fauqued M, Bech-Serra JJ, Tenbaum S, Garcia-Trevijano ER, Canals F, Merlino G, Avila MA, Recio JA (2011) Protein arginine methyltransferase 5 regulates ERK1/2 signal transduction amplitude and cell fate through CRAF. Sci Signal 4(190):ra58. doi:10.1126/scisignal.2001936

    Article  PubMed  Google Scholar 

  • Antonysamy S, Bonday Z, Campbell RM, Doyle B, Druzina Z, Gheyi T, Han B, Jungheim LN, Qian Y, Rauch C, Russell M, Sauder JM, Wasserman SR, Weichert K, Willard FS, Zhang A, Emtage S (2012) Crystal structure of the human PRMT5:MEP50 complex. Proc Natl Acad Sci U S A 109(44):17960–17965. doi:10.1073/pnas.1209814109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 11(5):384–400. doi:10.1038/nrd3674

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay S, Harris DP, Adams GN, Lause GE, McHugh A, Tillmaand EG, Money A, Willard B, Fox PL, Dicorleto PE (2012) HOXA9 methylation by PRMT5 is essential for endothelial cell expression of leukocyte adhesion molecules. Mol Cell Biol 32 (7):1202–1213. doi:MCB.05977-11 [pii] 10.1128/MCB.05977-11

  • Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer 11(10):726–734. doi:10.1038/nrc3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33(1):1–13. doi:10.1016/j.molcel.2008.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezzi M, Teo SX, Muller J, Mok WC, Sahu SK, Vardy LA, Bonday ZQ, Guccione E (2013) Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev 27(17):1903–1916. doi:10.1101/gad.219899.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boriack-Sjodin PA, Jin L, Jacques SL, Drew A, Sneeringer C, Scott MP, Moyer MP, Ribich S, Moradei O, Copeland RA (2016) Structural insights into ternary complex formation of human CARM1 with various substrates. ACS Chem Biol 11(3):763–771. doi:10.1021/acschembio.5b00773

    Article  CAS  PubMed  Google Scholar 

  • Branscombe TL, Frankel A, Lee JH, Cook JR, Yang Z, Pestka S, Clarke S (2001) PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J Biol Chem 276 (35):32971–32976. doi:10.1074/jbc.M105412200 M105412200 [pii]

  • Burgos ES, Wilczek C, Onikubo T, Bonanno JB, Jansong J, Reimer U, Shechter D (2015) Histone H2A and H4 N-terminal tails are positioned by the MEP50 WD repeat protein for efficient methylation by the PRMT5 arginine methyltransferase. J Biol Chem 290(15):9674–9689. doi:10.1074/jbc.M115.636894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan-Penebre E, Kuplast KG, Majer CR, Boriack-Sjodin PA, Wigle TJ, Johnston LD, Rioux N, Munchhof MJ, Jin L, Jacques SL, West KA, Lingaraj T, Stickland K, Ribich SA, Raimondi A, Scott MP, Waters NJ, Pollock RM, Smith JJ, Barbash O, Pappalardi M, Ho TF, Nurse K, Oza KP, Gallagher KT, Kruger R, Moyer MP, Copeland RA, Chesworth R, Duncan KW (2015) A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat Chem Biol 11(6):432–437. doi:10.1038/nchembio.1810

    Article  CAS  PubMed  Google Scholar 

  • Cho EC, Zheng S, Munro S, Liu G, Carr SM, Moehlenbrink J, Lu YC, Stimson L, Khan O, Konietzny R, McGouran J, Coutts AS, Kessler B, Kerr DJ, Thangue NB (2012) Arginine methylation controls growth regulation by E2F-1. EMBO J 31(7):1785–1797. doi:10.1038/emboj.2012.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan KW, Rioux N, Boriack-Sjodin PA, Munchhof MJ, Reiter LA, Majer CR, Jin L, Johnston LD, Chan-Penebre E, Kuplast KG, Porter Scott M, Pollock RM, Waters NJ, Smith JJ, Moyer MP, Copeland RA, Chesworth R (2016) Structure and property guided design in the identification of PRMT5 tool compound EPZ015666. ACS Med Chem Lett 7(2):162–166. doi:10.1021/acsmedchemlett.5b00380

    Article  CAS  PubMed  Google Scholar 

  • Friesen WJ, Paushkin S, Wyce A, Massenet S, Pesiridis GS, Van Duyne G, Rappsilber J, Mann M, Dreyfuss G (2001) The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol Cell Biol 21(24):8289–8300. doi:10.1128/MCB.21.24.8289-8300.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrmann J, Clancy KW, Thompson PR (2015) Chemical biology of protein arginine modifications in epigenetic regulation. Chem Rev 115(11):5413–5461. doi:10.1021/acs.chemrev.5b00003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao S, Wang Z (2012) Subcellular localization of p44/WDR77 determines proliferation and differentiation of prostate epithelial cells. PLoS One 7(11):e49173. doi:10.1371/journal.pone.0049173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Z, Zhang F, Wang ZQ, Ma W, Davis RE, Wang Z (2013) The p44/wdr77-dependent cellular proliferation process during lung development is reactivated in lung cancer. Oncogene 32(15):1888–1900. doi:10.1038/onc.2012.207

    Article  CAS  PubMed  Google Scholar 

  • Harris DP, Bandyopadhyay S, Maxwell TJ, Willard B, DiCorleto PE (2014) Tumor necrosis factor (TNF)-alpha induction of CXCL10 in endothelial cells requires protein arginine methyltransferase 5 (PRMT5)-mediated nuclear factor (NF)-kappaB p65 methylation. J Biol Chem 289(22):15328–15339. doi:10.1074/jbc.M114.547349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris DP, Chandrasekharan UM, Bandyopadhyay S, Willard B, DiCorleto PE (2016) PRMT5-mediated methylation of NF-kappaB p65 at Arg174 is required for endothelial CXCL11 gene induction in response to TNF-alpha and IFN-gamma costimulation. PLoS One 11(2):e0148905. doi:10.1371/journal.pone.0148905

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrmann F, Pably P, Eckerich C, Bedford MT, Fackelmayer FO (2009) Human protein arginine methyltransferases in vivo--distinct properties of eight canonical members of the PRMT family. J Cell Sci 122(Pt 5):667–677. doi:10.1242/jcs.039933

    Article  CAS  PubMed  Google Scholar 

  • Hosohata K, Li P, Hosohata Y, Qin J, Roeder RG, Wang Z (2003) Purification and identification of a novel complex which is involved in androgen receptor-dependent transcription. Mol Cell Biol 23(19):7019–7029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Z, Peng H, Ayyanathan K, Yan KP, Langer EM, Longmore GD, Rauscher FJ 3rd (2008) The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL-dependent transcriptional repression. Mol Cell Biol 28(10):3198–3207. doi:10.1128/MCB.01435-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu JM, Chen CT, Chou CK, Kuo HP, Li LY, Lin CY, Lee HJ, Wang YN, Liu M, Liao HW, Shi B, Lai CC, Bedford MT, Tsai CH, Hung MC (2011) Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation negatively modulates EGFR-mediated ERK activation. Nat Cell Biol 13 (2):174–181. doi:ncb2158 [pii] 10.1038/ncb2158

  • Hu D, Gur M, Zhou Z, Gamper A, Hung MC, Fujita N, Lan L, Bahar I, Wan Y (2015) Interplay between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis. Nat Commun 6:8419. doi:10.1038/ncomms9419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansson M, Durant ST, Cho EC, Sheahan S, Edelmann M, Kessler B, La Thangue NB (2008) Arginine methylation regulates the p53 response. Nat Cell Biol 10 (12):1431–1439. doi:ncb1802 [pii] 10.1038/ncb1802

  • Karkhanis V, Hu YJ, Baiocchi RA, Imbalzano AN, Sif S (2011) Versatility of PRMT5-induced methylation in growth control and development. Trends Biochem Sci 36 (12):633–641. doi:S0968-0004(11)00143-5 [pii] 10.1016/j.tibs.2011.09.001

  • Kim S, Gunesdogan U, Zylicz JJ, Hackett JA, Cougot D, Bao S, Lee C, Dietmann S, Allen GE, Sengupta R, Surani MA (2014) PRMT5 protects genomic integrity during global DNA demethylation in primordial germ cells and preimplantation embryos. Mol Cell 56(4):564–579. doi:10.1016/j.molcel.2014.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwak YT, Guo J, Prajapati S, Park KJ, Surabhi RM, Miller B, Gehrig P, Gaynor RB (2003) Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties. Mol Cell 11 (4):1055–1066. doi:S1097276503001011 [pii]

    Google Scholar 

  • Li Z, Yu J, Hosohama L, Nee K, Gkountela S, Chaudhari S, Cass AA, Xiao X, Clark AT (2015) The Sm protein methyltransferase PRMT5 is not required for primordial germ cell specification in mice. EMBO J 34(6):748–758. doi:10.15252/embj.201489319

    Article  CAS  PubMed  Google Scholar 

  • Ligr M, Patwa RR, Daniels G, Pan L, Wu X, Li Y, Tian L, Wang Z, Xu R, Wu J, Chen F, Liu J, Wei JJ, Lee P (2011) Expression and function of androgen receptor coactivator p44/Mep50/WDR77 in ovarian cancer. PLoS One 6(10):e26250. doi:10.1371/journal.pone.0026250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Likhite N, Jackson CA, Liang MS, Krzyzanowski MC, Lei P, Wood JF, Birkaya B, Michaels KL, Andreadis ST, Clark SD, Yu MC, Ferkey DM (2015) The protein arginine methyltransferase PRMT5 promotes D2-like dopamine receptor signaling. Sci Signal 8(402):ra115. doi:10.1126/scisignal.aad0872

    Article  PubMed  Google Scholar 

  • Liu L, Zhao X, Zhao L, Li J, Yang H, Zhu Z, Liu J, Huang G (2016) Arginine methylation of SREBP1a via PRMT5 promotes De Novo lipogenesis and tumor growth. Cancer Res 76(5):1260–1272. doi:10.1158/0008-5472.CAN-15-1766

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Stark GR (2015) NF-kappaB: regulation by methylation. Cancer Res 75(18):3692–3695. doi:10.1158/0008-5472.CAN-15-1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M (2012) Current chemical biology approaches to interrogate protein methyltransferases. ACS Chem Biol 7(3):443–463. doi:10.1021/cb200519y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mavrakis KJ, ER MD 3rd, Schlabach MR, Billy E, Hoffman GR, deWeck A, Ruddy DA, Venkatesan K, Yu J, McAllister G, Stump M, deBeaumont R, Ho S, Yue Y, Liu Y, Yan-Neale Y, Yang G, Lin F, Yin H, Gao H, Kipp DR, Zhao S, JT MN, Sprague ER, Zheng B, Lin Y, Cho YS, Gu J, Crawford K, Ciccone D, Vitari AC, Lai A, Capka V, Hurov K, Porter JA, Tallarico J, Mickanin C, Lees E, Pagliarini R, Keen N, Schmelzle T, Hofmann F, Stegmeier F, Sellers WR (2016) Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science 351(6278):1208–1213. doi:10.1126/science.aad5944

    Article  CAS  PubMed  Google Scholar 

  • Migliori V, Mapelli M, Guccione E (2012) On WD40 proteins: propelling our knowledge of transcriptional control? Epigenetics: Off J DNA Methylation Soc 7(8):815–822. doi:10.4161/epi.21140

    Article  CAS  Google Scholar 

  • Morales Y, Caceres T, May K, Hevel JM (2016) Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Arch Biochem Biophys 590:138–152. doi:10.1016/j.abb.2015.11.030

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Vishwanath SN, Erdjument-Bromage H, Tempst P, Sif S (2004) Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol 24 (21):9630–9645. doi:24/21/9630 [pii] 10.1128/MCB.24.21.9630-9645.2004

  • Pal S, Baiocchi RA, Byrd JC, Grever MR, Jacob ST, Sif S (2007) Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma. EMBO J 26 (15):3558–3569. doi:7601794 [pii] 10.1038/sj.emboj.7601794

  • Pugh CS, Borchardt RT, Stone HO (1978) Sinefungin, a potent inhibitor of virion mRNA(guanine-7-)-methyltransferase, mRNA(nucleoside-2′-)-methyltransferase, and viral multiplication. J Biol Chem 253(12):4075–4077

    CAS  PubMed  Google Scholar 

  • Saha K, Adhikary G, Eckert RL (2015) MEP50/PRMT5 reduces gene expression by histone arginine methylation and this is reversed by PKCdelta/p38delta signaling. J Invest dermatol. doi:10.1038/jid.2015.400

    Google Scholar 

  • Sakai N, Saito Y, Fujiwara Y, Shiraki T, Imanishi Y, Koshimizu TA, Shibata K (2015) Identification of protein arginine N-methyltransferase 5 (PRMT5) as a novel interacting protein with the tumor suppressor protein RASSF1A. Biochem Biophys Res Commun 467(4):778–784. doi:10.1016/j.bbrc.2015.10.065

    Article  CAS  PubMed  Google Scholar 

  • Sarkies P, Sale JE (2012) Cellular epigenetic stability and cancer. Trends Genet: TIG 28(3):118–127. doi:10.1016/j.tig.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  • Schapira M, Ferreira de Freitas R (2014) Structural biology and chemistry of protein arginine methyltransferases. Med Chem Commun 5(12):1779–1788. doi:10.1039/c4md00269e

    Article  CAS  Google Scholar 

  • Smith TF, Gaitatzes C, Saxena K, Neer EJ (1999) The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24(5):181–185

    Article  CAS  PubMed  Google Scholar 

  • Stirnimann CU, Petsalaki E, Russell RB, Muller CW (2010) WD40 proteins propel cellular networks. Trends Biochem Sci 35(10):565–574. doi:10.1016/j.tibs.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  • Stopa N, Krebs JE, Shechter D (2015) The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell Mol Life Sci 72(11):2041–2059. doi:10.1007/s00018-015-1847-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Wang M, Lv Z, Yang N, Liu Y, Bao S, Gong W, Xu RM (2011) Structural insights into protein arginine symmetric dimethylation by PRMT5. Proc Natl Acad Sci U S A 108 (51):20538–20543. doi:1106946108 [pii] 10.1073/pnas.1106946108

  • Tarighat SS, Santhanam R, Frankhouser D, Radomska HS, Lai H, Anghelina M, Wang H, Huang X, Alinari L, Walker A, Caligiuri MA, Croce CM, Li L, Garzon R, Li C, Baiocchi RA, Marcucci G (2015) The dual epigenetic role of PRMT5 in acute myeloid leukemia: gene activation and repression via histone arginine methylation. Leukemia. doi:10.1038/leu.2015.308

    PubMed  Google Scholar 

  • Tee WW, Pardo M, Theunissen TW, Yu L, Choudhary JS, Hajkova P, Surani MA (2010) Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency. Genes Dev 24 (24):2772–2777. doi:24/24/2772 [pii] 10.1101/gad.606110

  • Troffer-Charlier N, Cura V, Hassenboehler P, Moras D, Cavarelli J (2007) Functional insights from structures of coactivator-associated arginine methyltransferase 1 domains. EMBO J 26(20):4391–4401. doi:10.1038/sj.emboj.7601855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Pal S, Sif S (2008) Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells. Mol Cell Biol 28(20):6262–6277. doi:10.1128/MCB.00923-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei H, Wang B, Miyagi M, She Y, Gopalan B, Huang DB, Ghosh G, Stark GR, Lu T (2013) PRMT5 dimethylates R30 of the p65 subunit to activate NF-kappaB. Proc Natl Acad Sci U S A 110(33):13516–13521. doi:10.1073/pnas.1311784110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Min J (2011) Structure and function of WD40 domain proteins. Protein Cell 2(3):202–214. doi:10.1007/s13238-011-1018-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Bedford MT (2013) Protein arginine methyltransferases and cancer. Nat Rev Cancer 13(1):37–50. doi:10.1038/nrc3409

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Hadjikyriacou A, Xia Z, Gayatri S, Kim D, Zurita-Lopez C, Kelly R, Guo A, Li W, Clarke SG, Bedford MT (2015) PRMT9 is a type II methyltransferase that methylates the splicing factor SAP145. Nat Commun 6:6428. doi:10.1038/ncomms7428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi P, Gao S, Gu Z, Huang T, Wang Z (2014) P44/WDR77 restricts the sensitivity of proliferating cells to TGFbeta signaling. Biochem Biophys Res Commun 450(1):409–415. doi:10.1016/j.bbrc.2014.05.125

    Article  CAS  PubMed  Google Scholar 

  • Yost JM, Korboukh I, Liu F, Gao C, Jin J (2011) Targets in epigenetics: inhibiting the methyl writers of the histone code. Curr Chem Genomics 5(Suppl 1):72–84. doi:10.2174/1875397301005010072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HT, Zeng LF, He QY, Tao WA, Zha ZG, Hu CD (2016) The E3 ubiquitin ligase CHIP mediates ubiquitination and proteasomal degradation of PRMT5. Biochim Biophys Acta 1863(2):335–346. doi:10.1016/j.bbamcr.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Hosohata K, Gao S, Gu Z, Wang Z (2014) cGMP-dependent protein kinase Ibeta interacts with p44/WDR77 to regulate androgen receptor-driven gene expression. PLoS One 8(6):e63119. doi:10.1371/journal.pone.0063119

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Marijane Russell, Robert M Campbell and John E Munroe for valuable feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Antonysamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Antonysamy, S. (2017). The Structure and Function of the PRMT5:MEP50 Complex. In: Harris, J., Marles-Wright, J. (eds) Macromolecular Protein Complexes. Subcellular Biochemistry, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-319-46503-6_7

Download citation

Publish with us

Policies and ethics