Skip to main content

Compliant Mechanisms in Plants and Architecture

  • Chapter
  • First Online:
Biomimetic Research for Architecture and Building Construction

Abstract

Plant movements can inspire deployable systems for architectural purposes which can be regarded as ideal solutions combining resilient bio-inspired functionality with elegant natural motion. Here, we first give a concise overview of various compliant mechanisms existing in technics and in plants. Then we describe two case studies from our current joint research project among biologists, architects, construction engineers and materials scientists where the aesthetic movements of such role models from the plant kingdom are analysed, abstracted and implemented in bioinspired technical structures for sustainable architecture. Both examples are based on fast snapping movements of traps of carnivorous plants. The Waterwheel plant (Aldrovanda vesiculosa) captures prey underwater and the Venus flytrap (Dionaea muscipula) snaps in the air. We present results on the motion principles gained by quantitative biomechanical and functional-morphological analyses as well as their simulation and abstraction by using e.g. Finite Element Methods. The Aldrovanda mechanism was successfully translated into a similarly aesthetic and functional technical structure, named Flectofold, which exists in a prototype state. The Flectofold can be used as a façade shading element for complex curved surfaces as existing in modern architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Antkowiak B, Mayer WE, Engelmann W (1991) Oscillations of the membrane potential of pulvinar motor cells in situ in relation to leaflet movements of Desmodium motorium. J Exp Bot 42:901–910

    Article  Google Scholar 

  • Ashida J (1934) Studies on the leaf movement of Aldrovanda vesiculosa L. I. Process and mechanism of the movement. Mem Coll Sci Kyoto Imp Univ Ser B9:141–244

    Google Scholar 

  • Bailey T, McPherson S (2012) Dionaea. The Venus’s Flytrap. Redfern Natural History Productions, Poole

    Google Scholar 

  • Böhm J, Scherzer S, Krol E et al (2016) The Venus flytrap Dionaea muscipula counts prey-induced action potentials to induce sodium uptake. Curr Biol 26:1–10

    Article  Google Scholar 

  • Braam J (2005) Plant responses to mechanical stimuli. New Phytol 165:373–389

    Article  PubMed  Google Scholar 

  • Burgert I (2006) Exploring the micromechanics of plant cell walls. Am J Bot 93:1391–1401

    Article  PubMed  Google Scholar 

  • Burgert I, Fratzl P (2009) Actuation systems in plants as prototypes for bioinspired devices. Phil Trans R Soc A 367:1541–1557

    Article  CAS  PubMed  Google Scholar 

  • Campbell NA, Garber RC (1980) Vacuolar reorganization in the motor cells of Albizzia during leaf movement. Planta 148:251–255

    Article  CAS  PubMed  Google Scholar 

  • Colombani M, Forterre Y (2011) Biomechanics of rapid movements in plants: poroelastic measurements at the cell scale. Comput Method Biomec 14:115–117

    Article  Google Scholar 

  • Cross A (2012) Aldrovanda. The Waterwheel Plant. Redfern Natural History Productions, Poole

    Google Scholar 

  • Darwin C (1865) On the movements and habits of climbing plants. Bot J Linn Soc 9:1–18

    Article  Google Scholar 

  • Darwin C (1875) Insectivorous plants. Murray, London

    Book  Google Scholar 

  • Dawson C, Vincent JFV, Rocca AM (1997) How pine cones open. Nature 390:668

    Article  CAS  Google Scholar 

  • Deegan RD (2012) Finessing the fracture energy barrier in ballistic seed dispersal. Proc Natl Acad Sci U S A 109:5166–5169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumais J, Forterre Y (2012) “Vegetable dynamicks”: the role of water in plant movements. Annu Rev Fluid Mech 44:453–478

    Article  Google Scholar 

  • Forterre Y (2013) Slow, fast and furious: understanding the physics of plant movements. J Exp Bot 64:4745–4760

    Article  CAS  PubMed  Google Scholar 

  • Forterre Y, Skotheim JM, Dumais J et al (2005) How the Venus flytrap snaps. Nature 433:421–542

    Article  CAS  PubMed  Google Scholar 

  • Ge ZW, Yang ZL, Vellinga EC (2010) The genus Macrolepiota (Agaricaceae, Basidiomycota) in China. Fungal Divers 45:81–98

    Article  Google Scholar 

  • Gerbode SJ, Puzey JR, McCormick AG et al (2012) How the cucumber tendril coils and overwinds. Science 337:1087–1091

    Article  CAS  PubMed  Google Scholar 

  • Guo Q, Zheng H, Chen W et al (2014) Modeling bistable behaviors in morphing structures through finite element simulations. Bio Med Mater Eng 24:557–562

    Google Scholar 

  • Guo Q, Dai E, Han X et al (2015) Fast nastic motion of plants and bioinspired structures. J R Soc Interface 12:20150598

    Article  PubMed  PubMed Central  Google Scholar 

  • Henning F (2011) Handbuch Leichtbau. Carl Hanser Verlag, München

    Book  Google Scholar 

  • Heslop-Harrison Y (1970) Scanning electron microscopy of fresh leaves of Pinguicula. Science 167:172–174

    Article  CAS  PubMed  Google Scholar 

  • Hodick D, Sievers A (1989) On the mechanism of trap closure of Venus flytrap (Dionaea muscipula Ellis). Planta 179:32–42

    Article  CAS  PubMed  Google Scholar 

  • Holmes DP, Crosby AJ (2007) Snapping surfaces. Adv Mater 19:3589–3593

    Article  CAS  Google Scholar 

  • Hovenkamp PH, van der Ham RWJM, van Uffelen GA et al (2009) Spore movement driven by the spore wall in an eusporangiate fern. Grana 48:122–127

    Article  Google Scholar 

  • Howell LL (2001) Compliant mechanisms. Wiley, New York

    Google Scholar 

  • Hu N, Burgueño R (2015) Buckling-induced smart applications: recent advances and trends. Smart Mater Struct 24:063001

    Article  Google Scholar 

  • Imhof B, Gruber P (eds) (2015) Built to grow – blending architecture and biology. Birkhäuser Verlag, Basel

    Google Scholar 

  • Keijzer CJ, Hoek IHS, Willemse MTM (1987) The processes of anther dehiscence and pollen dispersal. III. The dehydration of the filament tip and the anther in three monocotyledonous species. New Phytol 106:281–287

    Article  Google Scholar 

  • Knippers J, Lienhard J, Schleicher S et al (2011) Gelenkloser, stufenlos verformbarer Klappmechanismus (Hingeless, infinitely deformable folding mechanism). Eur Patent Off Filing 10013852(8)

    Google Scholar 

  • Knippers J, Speck T (2012) Design and construction principles in nature and architecture. Bioinspir Biomim 7:015002

    Article  PubMed  Google Scholar 

  • Knippers J, Scheible F, Oppe M et al (2012) Bio-inspirierte kinetische Fassade für den Themenpavillon One Ocean Expo 2012 in Yeosu, Korea. Bautechnik 90:341–347

    Article  Google Scholar 

  • Kobayashi H, Kresling B, Vincent JFV (1998) The geometry of unfolding tree leaves. Proc Roy Soc B 265:147–154

    Article  Google Scholar 

  • Lee H, Xia C, Fang NX (2010) First jump of microgel; actuation speed enhancement by elastic instability. Soft Matter 6:4342–4345

    Article  CAS  Google Scholar 

  • Liang H, Mahadevan L (2011) Growth, geometry, and mechanics of a blooming lily. Proc Natl Acad Sci USA 108:5516–5521

    Google Scholar 

  • Lienhard J, Schleicher S, Poppinga S et al (2011) Flectofin: a hinge-less flapping mechanism inspired by nature. Bioinspir Biomim 6:045001

    Article  CAS  PubMed  Google Scholar 

  • Mitani J, Iagarshi T (2011) Interactive design of planar curved folding by reflection. In: Pacific conference on computer graphics and applications, Kaohsiung, Taiwan, 21–23 September 2011

    Google Scholar 

  • Müller L (1933) Über den Bau und die Entwicklung des Bewegungsmechanismus von Physostegia virginiana. Planta 18:651–663

    Article  Google Scholar 

  • Nakamura Y, Reichelt M, Mayer VE et al (2013) Jasmonates trigger preyinduced formation of ‘outer stomach’ in carnivorous sundew plants. Proc Roy Soc B 280:20130228

    Article  Google Scholar 

  • Niklas KJ (1992) Plant biomechanics: an engineering approach to plant form and function. The University of Chicago Press, Chicago

    Google Scholar 

  • Peakall R (1990) Responses of male Zaspilothynnus trilobatus Turner wasps to females and the sexually deceptive orchid it pollinates. Funct Ecol 4:159–167

    Article  Google Scholar 

  • Poppinga S, Joyeux M (2011) Different mechanics of snap-trapping in the two closely related carnivorous plants Dionaea muscipula and Aldrovanda vesiculosa. Phys Rev E 84:041928

    Article  Google Scholar 

  • Poppinga S, Masselter T, Speck T (2013) Faster than their prey: new insights into the rapid movements of active carnivorous plants traps. BioEssays 35:649–657

    Article  PubMed  Google Scholar 

  • Poppinga S, Haushahn T, Warnke M et al (2015) Sporangium exposure and spore release in the Peruvian maidenhair fern (Adiantum peruvianum, Pteridaceae). PLoS One 10:e0138495

    Article  PubMed  PubMed Central  Google Scholar 

  • Poppinga S, Weisskopf C, Westermeier AS et al (2016a) Fastest predators in the plant kingdom: functional morphology and biomechanics of suction traps found in the largest genus of carnivorous plants. AoB PLANTS 8:plv140

    Google Scholar 

  • Poppinga S, Kampowski T, Metzger A et al. (2016b) Comparative kinematical analyses of Venus flytrap (Dionaea muscipula) snap-traps. Beilstein J Nanotechnol 7:664–674

    Google Scholar 

  • Reith M, Claßen-Bockhoff R, Speck T (2006) Biomechanics in Salvia flowers, the role of lever and flower tube in specialization on pollinators. In: Herrel A, Speck T, Rowe N (eds) Ecology and biomechanics: a mechanical approach to the ecology of animals and plants. CRC Press, Boca Raton, pp 123–146

    Google Scholar 

  • Reith M, Baumann G, Claßen-Bockhoff R et al (2007) New insights in the functional morphology of the lever mechanism of Salvia pratensis (Lamiaceae). Ann Bot 100:393–400

    Article  PubMed  PubMed Central  Google Scholar 

  • Schleicher S (2015) Bio-inspired compliant mechanisms for architectural design. Transferring bending & folding principles of plant leaves. to flexible kinetic structures. Dissertation thesis, University of Stuttgart

    Google Scholar 

  • Schleicher S, Lienhard J, Poppinga S et al (2015) A methodology for transferring principles of plant movements to elastic systems in architecture. Comput Aided Des 60:105–117

    Article  Google Scholar 

  • Schürmann H (2007) Konstruieren mir Faser-Kunststoff-Verbunden. Springer, Berlin/Heidelberg

    Google Scholar 

  • Skead CJ (1975) Weaverbird pollination of Strelitzia reginae. Ostrich 46:83–185

    Article  Google Scholar 

  • Skotheim JM, Mahadevan L (2005) Physical limits and design principles for plant and fungal movements. Science 308:1308–1310

    Article  CAS  PubMed  Google Scholar 

  • Speck O, Speck D, Horn R, et al (2016) Biomimetic - bio-inspired - biomorph - sustainable? An attempt to classify and clarify biology-derived technical developments. Bioinspir Biomim (accepted)

    Google Scholar 

  • Speck T, Speck O (2008) Process sequences in biomimetic research. In: Brebbia CA (ed) Design and nature IV. WIT Press, Southampton, pp 3–11

    Chapter  Google Scholar 

  • Speck T (2015) Approaches to bio-inspiration in novel architecture. In: Imhof B, Gruber P (eds) Built to grow – blending architecture and biology. Birkhäuser Verlag, Basel, pp 145–149

    Google Scholar 

  • Speck T, Knippers J, Speck O (2015) Self-x-materials and -structures in nature and technology: bio-inspiration as driving force for technical innovation. Archit Design 85:34–39

    Article  Google Scholar 

  • Tachi T (2009) Simulation of rigid origami. In: Lang R, Peters AK (eds) Origami 4: the fourth international conference on origami in science, mathematics, and education, vol 4. A K Peters Limited, Natick, pp 175–187

    Chapter  Google Scholar 

  • van der Cingel NA (2001) An atlas of orchid pollination. A A Balkema, Rotterdam

    Google Scholar 

  • van Doorn WG, van Meeteren U (2003) Flower opening and closure: a review. J Exp Bot 54:1801–1812

    Article  PubMed  Google Scholar 

  • van Doorn WG, Kamdee C (2014) Flower opening and closure: an update. J Exp Bot 65:5749–5757

    Article  PubMed  Google Scholar 

  • Velasco R, Brakke AP, Chavarro D (2015) Dynamic façades and computation: towards an inclusive categorization of high performance kinetic façade systems. In: Celani G, Sperling DM, Franco JMS (eds) Computer-aided architectural design futures. The next city, vol 527, New technologies and the future of the built environment. Springer, Berlin/Heidelberg, pp 172–191

    Chapter  Google Scholar 

  • Vincent O, Weißkopf C, Poppinga S et al (2011) Ultra-fast underwater suction traps. Proc Roy Soc B 278:2909–2914

    Article  Google Scholar 

  • Weintraub M (1952) Leaf movements in Mimosa pudica L. New Phytol 50:357–582

    Article  Google Scholar 

  • Williams SE, Bennett AB (1982) Leaf closure in the Venus flytrap: an acid growth response. Science 218:1120–1122

    Article  CAS  PubMed  Google Scholar 

  • Williams SE, Pickard BG (1979) The role of action potentials in the control of capture movements of Drosera and Dionaea. In: Skoog F (ed) Plant growth substances 1979 – Proceedings of the 10th international conference on plant growth substances. Madison, Wisconsin, pp 470–480

    Google Scholar 

Download references

Acknowledgements

We thank Anja and Holger Hennern for their kind permission to include Fig. 9.1c in this chapter. This work has been funded by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre (SFB/Transregio) 141‘Biological Design and Integrative Structures’/project A04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Poppinga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Poppinga, S. et al. (2016). Compliant Mechanisms in Plants and Architecture. In: Knippers, J., Nickel, K., Speck, T. (eds) Biomimetic Research for Architecture and Building Construction. Biologically-Inspired Systems, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-46374-2_9

Download citation

Publish with us

Policies and ethics