Skip to main content

Insect-Inspired Architecture: Insects and Other Arthropods as a Source for Creative Design in Architecture

  • Chapter
  • First Online:
Biomimetic Research for Architecture and Building Construction

Part of the book series: Biologically-Inspired Systems ((BISY,volume 8))

Abstract

Materials, structures, surfaces and buildings of insects and other arthropods are of great scientific interest. Moreover, basic knowledge about the functional principles of these structures is also highly relevant for technical applications, especially in architecture. Some of the greatest challenges for today's architecture are multifunctionality and sustainability. Insects have solved these problems during their evolution. Zoologists, entomologists and animal morphologists have collected a huge amount of information about the structure and function of such living constructions and surfaces. This information can be utilized in order to mimic them for applications in architecture. The main technology areas, in which insect solutions to problems can be applied, are the following: (1) new materials, (2) constructions, (3) surfaces, (4) adhesives and bonding technology, (5) optics and photonics. A few selected examples are discussed in this chapter, but having more than one million described species as a source for inspiration, one may expect many more ideas from entomology for insect-based biomimetics in architecture. The incorporation of additional biological knowledge into the design of artificial systems will improve their performance. However, biologists still do not have a complete understanding of how insect materials are constructed, what their performance is, how insect surfaces function, etc. Hence, many technological areas will benefit from additional entomological research. Additionally, most of the huge variety of insects and their systems have been not previously studied at all. This is the reason that the screening for new systems with interesting properties in biology seems to remain an extremely important research field in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • AmphibianArc (2012) http://www.dezeen.com/2012/07/13/zoomlion-headquarters-exhibition-center-by-amphibianarc/

  • Arzt E, Gorb S, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci U S A 100:10603–10606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bamboo Tower (2015) http://www.wired.com/2015/01/architecture-and-vision-warkawater/

  • Barbakadze N, Enders S, Gorb SN, Arzt E (2006) Local mechanical properties of the head articulation cuticle in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J Exp Biol 209:722–730

    Article  CAS  PubMed  Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus or escape from contamination in biological surfaces. Planta 202:1–8

    Article  CAS  Google Scholar 

  • Barthlott W, Neinhuis C (1998) Lotusblumen und Autolacke: Ultrastruktur pflanzlicher Grenzflächen und biomimetische unverschmutzbare Werkstoffe. In: Nachtigall W, Wisser A (eds) 4. Bionik – Kongress, München 1998. Gustav Fischer Verlag, Stuttgart/Jena/Lübeck/Ulm, pp 281–293

    Google Scholar 

  • Bauchhenss E, Renner M (1977) Pulvillus of Calliphora erythrocephala Meig. (Diptera; Calliphoridae). Int J Insect Morphol 6(3/4):225–227

    Article  Google Scholar 

  • Baunetz (2015) http://www.baunetz.de/meldungen/Meldungen-Koreanisches_Apartmenthaus_4508247.html

  • Bernhard CG, Miller WH, Moller AR (1965) Insect corneal nipple array – a biological broad-band impedance transformer that acts as an antireflection coating. Acta Physiol Scand S 63(Suppl, 243):5

    Google Scholar 

  • Chapman AD (2006) Numbers of living species in Australia and the world. Australian Biological Resources Study, Canberra. ISBN 978-0-642-56850-2

    Google Scholar 

  • Dörstelmann M, Parascho P, Prado M, Menges A, Knippers J (2014) Integrative computational design methodologies for modular architectural fiber composite morphologies. In: Proceedings of ACADIA 2014, Los Angeles, pp 219–228

    Google Scholar 

  • Erwin TL (1982) Tropical forests: their richness in Coleoptera and other arthropod species. Coleopt Bull 36:74–75

    Google Scholar 

  • Erwin TL (1997) Biodiversity at its utmost: tropical forest beetles. In: Reaka-Kudla ML, Wilson DE, Wilson EO (eds) Biodiversity II. Joseph Henry Press, Washington, DC, pp 27–40

    Google Scholar 

  • Francouer A, Loiselle R (1988) Evolution du strigile chez les formicides (Hymenopteres). Natur Can 115:333–335

    Google Scholar 

  • Ghiradella H (1989) Structure and development of iridescent butterfly scales: lattices and laminae. J Morphol 202:69–88

    Article  Google Scholar 

  • Ghiradella H (1991) Light and colour on the wing: structural colours in butterflies and moths. Appl Optics 30:3492–3500

    Article  CAS  Google Scholar 

  • Ghiradella H, Aneshansley D, Eisner T, Silbergleid RE, Hinton HE (1972) Ultra-violet reflection of a male butterfly: interference colour caused by thin layer elaboration of wing scales. Science 178:1214–1217

    Article  CAS  PubMed  Google Scholar 

  • Gorb SN (1997a) Porous channels in the cuticle of the head-arrester system in dragon/damselflies (Insecta: Odonata). Microsc Res Techn 37(5/6):583–591

    Article  CAS  Google Scholar 

  • Gorb SN (1997b) Ultrastructural architecture of the microtrichia of the insect cuticle. J Morphol 234:1–10

    Article  Google Scholar 

  • Gorb SN (2000) Ultrastructure of the neck membrane in dragonflies (Odonata). J Zool (Lond) 250:479–494

    Article  Google Scholar 

  • Gorb SN (2001) Attachment devices of insect cuticle. Kluwer Academic Publishers, Dordrecht/Boston/London

    Google Scholar 

  • Gorb SN (2011) Insect-inspired technologies: Insects as a source for biomimetics. In: Vilcinskas A (ed) Insect biotechnology. Springer, Dordrecht, pp 241–264

    Chapter  Google Scholar 

  • Gorb SN, Sinha M, Peressadko A, Daltorio KA, Quinn RD (2007) Insects did it first: a micropatterned adhesive tape for robotic applications. Bioinsp Biomim 2:S117–S125

    Article  PubMed  Google Scholar 

  • Gorb SN, Tynkkynen K, Kotiaho JS (2009) Crystalline wax coverage of the imaginal cuticle in Calopteryx splendens (Odonata: Calopterygidae). Int J Odonatol 12:205–221

    Article  Google Scholar 

  • Gorb SN, Appel E, Kovalev A (2015) Structural background of highly-visible white tibia in male Platycnemis phyllopoda. In: Abstracts of “34. Jahrestagung der GdO, 20.-22. März 2015 Braunschweig”, Germany, p 14

    Google Scholar 

  • Grodnicky DL (1988) Structure and function of the scale coverage of the wings in butterflies (Lepidoptera /Hesperioidea, Papilionoidea). Entomol Rev 67:251–256

    Google Scholar 

  • Gronenberg W (1996) Fast actions in small animals: springs and click mechanisms. J Comp Physiol A 178:727–734

    Article  Google Scholar 

  • Gruber P (2011) Biomimetics in architecture: architecture of life and buildings. Springer, Vienna/New York

    Book  Google Scholar 

  • Guillermo-Ferreira R, Bispo PC, Appel E, Kovalev A, Gorb SN (2015a) Mechanism of the wing colouration in the dragonfly Zenithoptera lanei (Odonata: Libellulidae) and its role in intraspecific communication. J Insect Physiol 81:129–136. doi:10.1016/j.jinsphys.2015.07.010

    Google Scholar 

  • Guillermo-Ferreira R, Gorb SN, Appel E, Kovalev A, Bispo PC (2015b) Variable assessment of wing colouration in aerial contests of the red-winged damselfly Mnesarete pudica (Zygoptera, Calopterygidae). Naturwissenschaften 102(3–4):13 pp. doi:10.1007/s00114-015-1261-z

  • Haas F, Gorb S, Wootton RJ (2000a) Elastic joints in dermapteran hind wings: materials and wing folding. Arthr Struct Dev 29:137–146

    Article  CAS  Google Scholar 

  • Haas F, Gorb SN, Blickhan R (2000b) The function of resilin in beetle wings. Proc Roy Soc Lond B 267:1375–1381

    Article  CAS  Google Scholar 

  • Habenicht G (2002) Kleben: Grundlagen, Technologien, Anwendung. Springer, Berlin

    Book  Google Scholar 

  • Hackman RH, Goldberg M (1987) Comparative study of some expanding arthropod cuticles: the relation between composition, structure and function. J Insect Physiol 33:39–50

    Article  CAS  Google Scholar 

  • Hansell M (2007) Built by animals: the natural history of animal architecture. Oxford University Press, New York

    Google Scholar 

  • Heckmann CW (1983) Comparative morphology of arthropod exterior surfaces with capability of binding a film of air underwater. Int Rev Ges Hydrobiol 68:715–736

    Article  Google Scholar 

  • Heie OE (1987) Morphological structure and adaptations. In: Aphids: biology, natural enemies and control. Elsevier, Amsterdam, pp 393–400

    Google Scholar 

  • Hennemann O-D (2000) Kleben von Kunststoffen. Anwendung, Ausbildung, Trend. Kunststoffe 90:184–188

    Google Scholar 

  • Hepburn HR (1985) Structure of the integument. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, Oxford et al., pp 1–58

    Google Scholar 

  • Hepburn HR, Chandler HD (1976) Material properties of arthropod cuticles: the arthrodial membranes. J Comp Physiol A 109:177–198

    Article  Google Scholar 

  • Hepburn HR, Chandler HD (1978) Tensile mechanical properties and transconformational changes of chitins. In: Muzzarelli RA, Parisier ER (eds) Proceedings of the first international conference on chitin/chitosan. Massachusetts Institute of Technology, Cambridge, MA, pp 124–143

    Google Scholar 

  • Hinton HE (1976) The fine structure of the pupal plastron of simulid flies. J Insect Physiol 22:1061–1070

    Article  Google Scholar 

  • Huxley J (1975) The basis of structural colour variation in two species of Papilio. J Entomol A 50:9–22

    Google Scholar 

  • Hwang J, Jeong Y, Park JM, Lee KH, Hong JW, Choi J (2015) Biomimetics: forecasting the future of science, engineering, and medicine. Int J Nanomed 10:5701–5713

    CAS  Google Scholar 

  • Ishii S (1987) Adhesion of a leaf feeding ladybird Epilachna vigintioctomaculata (Coleoptera: Coccinellidae) on a vertically smooth surface. Appl Ent Zool 22:222–228

    Google Scholar 

  • Karasev VP (1989) Scale coverage of the curculionid beetles of the genus Tichius Germar (Coleoptera, Curculionidae). In: Dynamics of zoocoenozes and animal conservation in Belorussia, Minsk, p 85 (in Russian)

    Google Scholar 

  • Knippers J, Schlaich J (2000) Folding mechanism of the Kiel Hörn Footbridge. Struct Eng Int 10:50–53

    Article  Google Scholar 

  • Knippers J, Speck T (2012) Design and construction principles in nature and architecture. Bioinspir. Biomim 7015002 (10 pp). doi:10.1088/1748-3182/7/1/015002

    Google Scholar 

  • Kovalev A, Filippov A, Gorb SN (2016) Correlation analysis of symmetry breaking in the surface nanostructure ordering: case study of the ventral scale of the snake Morelia viridis. Appl Phys A 122:253. doi:10.1007/s00339-016-9795-2

    Article  Google Scholar 

  • Langer M, Ruppersberg P, Gorb SN (2004) Adhesion forces measured at the level of a terminal plate of the fly’s seta. Proc R Soc Lond B 271:2209–2215

    Article  Google Scholar 

  • Li X, Madan I, Bozkurt H, Birkhofer H (2004) Lifetime of solid lubricated roller bearings. In: 14th international colloquium tribology, January 2004, Esslingen, Germany, vol 3, pp 1361–1364

    Google Scholar 

  • Mazzoleni I (2013) Architecture follows nature – biomimetic principles for innovative design. CRC Press, Boca Raton

    Google Scholar 

  • Messner B (1988) Funktionelle Morphologie der Insektenkutikula am Beispiel der Plastronatmer. Wiss Z E M Arndt-Univ Greifswald Math Naturwiss R 37:27–30

    Google Scholar 

  • Minnock, K. (2016) http://www.benhuckerbydesign.co.uk/team/kyle-minnock

  • Miyoshi K (2001) Solid lubrication: fundamentals and applications. Marcel Decker Inc., New York/Basel

    Book  Google Scholar 

  • Niederegger S, Gorb S (2003) Tarsal movements in flies during leg attachment and detachment on a smoothe substrate. J Insect Physiol 49:611–620

    Article  CAS  PubMed  Google Scholar 

  • Niederegger S, Gorb SN, Jiao Y (2002) Contact behaviour of tenent setae in attachment pads of the blowfly Calliphora vicina (Diptera, Calliphoridae). J Comp Physiol A 187:961–970

    Article  Google Scholar 

  • Novotny V, Basset Y, Miller SE, Weiblen GD, Bremer B, Cizek L, Drozd P (2002) Low host specificity of herbivorous insects in a tropical forest. Nature 416(6883):841–844

    Article  CAS  PubMed  Google Scholar 

  • Parascho S, Knippers J, Dörstelmann M, Prado M, Menges A (2014) Modular fibrous morphologies: computational design, simulation and fabrication of differentiated fibre composite building components. In: Block P et al (eds) Advances in architectural geometry. Springer, Vienna, pp 29–45. doi:10.1007/978-3-319-11418-7_3

    Google Scholar 

  • Park J-G, Kim S-H, Magkiriadou S, Choi TM, Kim Y-S, Manoharan VN (2014) Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly. Angewandte Chemie Int Ed 53(11):2899–2903. doi:10.1002/anie.201309306

    Article  CAS  Google Scholar 

  • Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414:33–34

    Article  CAS  PubMed  Google Scholar 

  • Parker AR, Hegedus Z, Watts RA (1998) Solar-absorber antireflector on the eye of an eocene fly. Proc Roy Soc London B 265:811–815

    Article  Google Scholar 

  • Peisker H, Gorb SN (2010) Always on the bright side of life: anti-adhesive properties of insect ommatidia grating. J Exp Biol 213:3457–3462

    Article  PubMed  Google Scholar 

  • Peressadko A, Gorb SN (2004) When less is more: experimental evidence for tenacity enhancement by division of contact area. J Adhes 80:247–261

    Article  CAS  Google Scholar 

  • Perez Goodwyn P (2009) Anti-wetting surfaces in Heteroptera (Insecta): Hairy solutions to any problem. In: Gorb SN (ed) Functional surfaces in biology, vol 1. Springer, Dordrecht, pp 55–76

    Chapter  Google Scholar 

  • Perez Goodwyn PJ, Gorb SN (2004) Frictional properties of contacting surfaces in the hemelytra-hindwing locking mechanism in the bug Coreus marginatus (Heteroptera, Coreidae). J Comp Physiol A 190:575–580

    Article  CAS  Google Scholar 

  • Pohl G, Nachtigall W (2015) Biomimetics for architecture & design. Springer, Cham, doi:10.1007/978-3-319-19120-1_7

    Google Scholar 

  • Scherge M, Gorb SN (2001) Biological micro- and nanotribology. Springer, Berlin

    Book  Google Scholar 

  • Schönitzer K, Lawitzky G (1987) A phylogenetic study of the antenna cleaner in Formicidae, Mutillidae and Tiphiidae (Insecta, Hymenoptera). Zoomorphology 107:273–285

    Article  Google Scholar 

  • Schultz TD, Hadley NF (1987) Structural colors of tiger beetles and their role in heat transfer through the integument. Physiol Zool 60:737–745

    Article  Google Scholar 

  • Southwick EE (1985) Bee hair structure and the effect of hair on metabolism at low temperature. J Apicultural Res 24:144–149

    Article  Google Scholar 

  • Stork NE (1980) Experimental analysis of adhesion of Chrysolina polita (Chrysomelidae, Coleoptera) on a variety of surfaces. J Exp Biol 88:91–107

    Google Scholar 

  • Stork NE (1983) The adherence of beetle tarsal setae to glass. J Nat Hist 17:583–597

    Article  Google Scholar 

  • Thorpe WH, Crisp DJ (1947) Studies on plastron respiration. I. The biology of Aphelocheirus and the mechanism of plastron retention. J Exp Biol 24:227–269

    CAS  PubMed  Google Scholar 

  • Tupper EC (2013) Introduction to naval architecture, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  • Vincent JFV (1981) Morphology and design of the extensible intersegmental membrane of the female migratory locust. Tiss Cell 13:18–31

    Article  Google Scholar 

  • Vincent JFV, Wood SDE (1972) Mechanism of abdominal extension during oviposition in Locusta. Nature 235:167–168

    Article  Google Scholar 

  • Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424:852–855

    Article  CAS  PubMed  Google Scholar 

  • Vukusic P, Sambles JR, Lawrence CR, Wootton RJ (1999) Quantified interference and diffraction in single Morpho butterfly scales. Proc R Soc Lond B 266:1403–1411

    Article  Google Scholar 

  • Vukusic P, Sambles JR, Ghiradella H (2000a) Optical classification of microstructure in butterfly wing-scales. Photonics Sci News 6:61–66

    Google Scholar 

  • Vukusic P, Sambles JR, Lawrence CR (2000b) Structural colour: colour mixing in wing scales of a butterfly. Nature 404:457

    Article  CAS  PubMed  Google Scholar 

  • Wagner T, Neinhuis C, Barthlott W (1996) Wettability and contaminability of insect wings as a function of their surface sculpture. Acta Zool 77:213–225

    Article  Google Scholar 

  • Waite JH (1983) Adhesion in byssally attached bivalves. Biol Rev 58:209–231

    Article  CAS  Google Scholar 

  • Wigglesworth VB (1987) How does a fly cling to the under surface of a glass sheet? J Exp Biol 129:363–367

    Google Scholar 

  • Wootton RJ (1991) The functional morphology of the wings of Odonata. Adv Odonatol 5:153–169

    Google Scholar 

  • Wootton RJ, Newman DJS (1979) Whitefly have the highest contraction frequencies yet recorded in non-fibrillar flight muscles. Nature 280:402–403

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Jan Knippers (Stuttgart) and Oliver Betz (Tübingen) for their valuable comments on an early version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav N. Gorb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gorb, S.N., Gorb, E.V. (2016). Insect-Inspired Architecture: Insects and Other Arthropods as a Source for Creative Design in Architecture. In: Knippers, J., Nickel, K., Speck, T. (eds) Biomimetic Research for Architecture and Building Construction. Biologically-Inspired Systems, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-46374-2_4

Download citation

Publish with us

Policies and ethics