Skip to main content

Ensemble Diversity in Evolving Data Streams

  • Conference paper
  • First Online:
Discovery Science (DS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9956))

Included in the following conference series:

Abstract

While diversity of ensembles has been studied in the context of static data, it has not still received such research interest for evolving data streams. This paper aims at analyzing the impact of concept drift on diversity measures calculated for streaming ensembles. We consider six popular diversity measures and adapt their calculations to data stream requirements. A comprehensive series of experiments reveals the potential of each measure for visualizing ensemble performance over time. Measures highlighted as capable of depicting sudden and virtual drifts over time are used as basis for detecting changes with the Page-Hinkley test. Experimental results demonstrate that the \(\kappa \) interrater agreement, disagreement, and double fault measures, although designed to quantify diversity, provide a means of detecting changes competitive to that using classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Source code, test scripts, and generator parameters available at:http://www.cs.put.poznan.pl/dbrzezinski/software.php.

  2. 2.

    http://www.cs.put.poznan.pl/dbrzezinski/software/DiversityInStream.html.

References

  1. Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: A new ensemble diversity measure applied to thinning ensembles. In: Windeatt, T., Roli, F. (eds.) MCS 2003. LNCS, vol. 2709, pp. 306–316. Springer, Heidelberg (2003). doi:10.1007/3-540-44938-8_31

    Chapter  Google Scholar 

  2. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive online analysis. J. Mach. Learn. Res. 11, 1601–1604 (2010)

    Google Scholar 

  3. Brzezinski, D., Stefanowski, J.: Reacting to different types of concept drift: the accuracy updated ensemble algorithm. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 81–94 (2014)

    Article  Google Scholar 

  4. Brzezinski, D., Stefanowski, J.: Prequential AUC for classifier evaluation and drift detection in evolving data streams. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2014. LNCS (LNAI), vol. 8983, pp. 87–101. Springer, Heidelberg (2015). doi:10.1007/978-3-319-17876-9_6

    Google Scholar 

  5. Ditzler, G., Roveri, M., Alippi, C., Polikar, R.: Learning in nonstationary environments: a survey. IEEE Comp. Intell. Mag. 10(4), 12–25 (2015)

    Article  Google Scholar 

  6. Gama, J.: Knowledge Discovery from Data Streams. Chapman and Hall, Boca Raton (2010)

    Book  MATH  Google Scholar 

  7. Gama, J., Sebastião, R., Rodrigues, P.P.: On evaluating stream learning algorithms. Mach. Learn. 90(3), 317–346 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A surveyon concept drift adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014)

    Article  MATH  Google Scholar 

  9. Giacinto, G., Roli, F.: An approach to the automatic design of multiple classifier systems. Pattern Recogn. Lett. 22(1), 25–33 (2001)

    Article  MATH  Google Scholar 

  10. Giacinto, G., Roli, F.: Design of effective neural network ensembles for image classification purposes. Image Vis. Comput. 19(9–10), 699–707 (2001)

    Article  Google Scholar 

  11. Krempl, G., Zliobaite, I., Brzezinski, D., Hüllermeier, E., Last, M., Lemaire, V., Noack, T., Shaker, A., Sievi, S., Spiliopoulou, M., Stefanowski, J.: Open challenges for data stream mining research. SIGKDD Explorations 16(1), 1–10 (2014)

    Article  Google Scholar 

  12. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience, Hoboken (2004)

    Book  MATH  Google Scholar 

  13. Margineantu, D.D., Dietterich, T.G.: Pruning adaptive boosting. In: Procreedings of 14th International Conference on Machine Learning, pp. 211–218 (1997)

    Google Scholar 

  14. Minku, L.L., White, A.P., Yao, X.: The impact of diversity on online ensemble learning in the presence of concept drift. IEEE Trans. Knowl. Data Eng. 22(5), 730–742 (2010)

    Article  Google Scholar 

  15. Oza, N.C., Russell, S.J.: Experimental comparisons of online and batch versions of bagging and boosting. In: Proceedings of 7th ACM SIGKDD International Conference on Knowledge Discovery Data Mining, pp. 359–364 (2001)

    Google Scholar 

  16. Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classification. In: Proceedings of 7th ACM SIGKDD International Conference on Knowledge Discovery Data Mining, pp. 377–382 (2001)

    Google Scholar 

  17. Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.B.: PAKDD data mining competition (2009)

    Google Scholar 

  18. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of 9th ACM SIGKDD International Conference on Knowledge Discovery Data Mining, pp. 226–235 (2003)

    Google Scholar 

  19. Woźniak, M.: Application of combined classifiers to data stream classification. In: Saeed, K., Chaki, R., Cortesi, A., Wierzchoń, S. (eds.) CISIM 2013. LNCS, vol. 8104, pp. 13–23. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40925-7_2

    Chapter  Google Scholar 

  20. Zliobaite, I., Pechenizkiy, M., Gama, J.: An overview of concept drift applications. In: Japkowicz, N., Stefanowski, J. (eds.) Big Data Analysis: New Algorithms for a New Society, Studies in Big Data, vol. 16, pp. 91–114. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors’ research was funded by the Polish National Science Center under Grant No. DEC-2013/11/B/ST6/00963. Dariusz Brzezinski acknowledges the support of an FNP START scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Brzezinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Brzezinski, D., Stefanowski, J. (2016). Ensemble Diversity in Evolving Data Streams. In: Calders, T., Ceci, M., Malerba, D. (eds) Discovery Science. DS 2016. Lecture Notes in Computer Science(), vol 9956. Springer, Cham. https://doi.org/10.1007/978-3-319-46307-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46307-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46306-3

  • Online ISBN: 978-3-319-46307-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics